Show simple item record

dc.contributor.authorLopes, MA
dc.contributor.authorPerani, S
dc.contributor.authorYaakub, SN
dc.contributor.authorRichardson, MP
dc.contributor.authorGoodfellow, M
dc.contributor.authorTerry, JR
dc.date.accessioned2023-02-20T13:05:14Z
dc.date.issued2019
dc.identifier.issn2045-2322
dc.identifier.issn2045-2322
dc.identifier.other10169
dc.identifier.urihttp://hdl.handle.net/10026.1/20470
dc.description.abstract

<jats:title>Abstract</jats:title><jats:p>Seizure onset in epilepsy can usually be classified as focal or generalized, based on a combination of clinical phenomenology of the seizures, EEG recordings and MRI. This classification may be challenging when seizures and interictal epileptiform discharges are infrequent or discordant, and MRI does not reveal any apparent abnormalities. To address this challenge, we introduce the concept of <jats:italic>Ictogenic Spread</jats:italic> (IS) as a prediction of how pathological electrical activity associated with seizures will propagate throughout a brain network. This measure is defined using a person-specific computer representation of the functional network of the brain, constructed from interictal EEG, combined with a computer model of the transition from background to seizure-like activity within nodes of a distributed network. Applying this method to a dataset comprising scalp EEG from 38 people with epilepsy (17 with genetic generalized epilepsy (GGE), 21 with mesial temporal lobe epilepsy (mTLE)), we find that people with GGE display a higher IS in comparison to those with mTLE. We propose IS as a candidate computational biomarker to classify focal and generalized epilepsy using interictal EEG.</jats:p>

dc.format.extent10169-
dc.format.mediumElectronic
dc.languageen
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.subjectAdult
dc.subjectBrain
dc.subjectComputational Biology
dc.subjectElectroencephalography
dc.subjectEpilepsies, Partial
dc.subjectEpilepsy
dc.subjectEpilepsy, Generalized
dc.subjectFemale
dc.subjectHumans
dc.subjectMagnetic Resonance Imaging
dc.subjectMale
dc.subjectSeizures
dc.titleRevealing epilepsy type using a computational analysis of interictal EEG
dc.typejournal-article
dc.typeArticle
plymouth.author-urlhttps://www.ncbi.nlm.nih.gov/pubmed/31308412
plymouth.issue1
plymouth.volume9
plymouth.publisher-urlhttp://dx.doi.org/10.1038/s41598-019-46633-7
plymouth.publication-statusPublished online
plymouth.journalScientific Reports
dc.identifier.doi10.1038/s41598-019-46633-7
plymouth.organisational-group/Plymouth
plymouth.organisational-group/Plymouth/Faculty of Health
plymouth.organisational-group/Plymouth/Faculty of Health/School of Psychology
plymouth.organisational-group/Plymouth/Users by role
plymouth.organisational-group/Plymouth/Users by role/Academics
dc.publisher.placeEngland
dcterms.dateAccepted2019-07-02
dc.rights.embargodate2023-2-21
dc.identifier.eissn2045-2322
dc.rights.embargoperiodNot known
rioxxterms.versionofrecord10.1038/s41598-019-46633-7
rioxxterms.licenseref.urihttp://www.rioxx.net/licenses/all-rights-reserved
rioxxterms.licenseref.startdate2019-07-15
rioxxterms.typeJournal Article/Review


Files in this item

Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record


All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV