Show simple item record

dc.contributor.authorLewin, G.
dc.date.accessioned2019-05-20T10:25:50Z
dc.date.available2019-05-20T10:25:50Z
dc.date.issued2016
dc.identifier.citation

Lewin, G. (2016) 'The influence of resin rich volumes on the mechanical properties of glass fibre reinforced polymer composites', The Plymouth Student Scientist, 9(2), p. 123-159.

en_US
dc.identifier.issn1754-2383
dc.identifier.urihttp://hdl.handle.net/10026.1/14131
dc.description.abstract

Glass fibre composite plates were manufactured using several methods to promote increasing levels of fibre volume fraction (Vf), inversely leading to a lower residual resin content and theoretically smaller resin rich volumes (RRV). The aim of this project is to determine the effect of resin rich volumes on the mechanical properties tested and whether they scale with the increase in Vf. Five test plates were manufactured, the first using hand-lamination (HL) with three further plates produced using resin infusion (RI), with infusion occurring under consolidation pressures of 300, 600 and 900mbar. The fifth plate was infused under full vacuum, ~1000mbar consolidation pressure, and then placed into an autoclave (AC) with the total consolidation pressure reaching 5860mbar. Flexural, tensile and inter-laminar shear strength (ILSS) tests were conducted on samples taken from each plate using an Instron 5582 Universal Testing machine with 100kN load cell in accordance to the relevant British Standard for each method. Where possible, further analysis was conducted in order to validate the results based on the theoretical, experimental and simulated methods used. The recorded Vf across the plates increased from 40.77% (HL) to 49.60% (AC), a real term decrease in residual resin content of 14.91%. Optical analysis confirmed that with the increase in Vf the number and size of RRV within each plate decreased. The Elastic modulus, flexural and tensile strengths each showed an increase in property of 365.2MPa, 6.68MPa & 9.11MPa respectively for each 1% increase in Vf across this range. Across the same range in Vf, the ILSS test specimens showed a decrease in strength of 0.373MPa for each 1% increase in Vf. Based on the conducted experiments it can be concluded that there is a strong positive linear relationship between a decrease in RRV and the modulus, flexural and tensile strengths of the plates tested.

en_US
dc.language.isoenen_US
dc.publisherUniversity of Plymouth
dc.rightsAttribution 3.0 United States*
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/us/*
dc.subjectfibre volume fractionen_US
dc.subjectresin rich volumesen_US
dc.subjecthand-laminationen_US
dc.subjectGlass fibreen_US
dc.subjectGlass fibre composite platesen_US
dc.subjectflexural and tensile strengthsen_US
dc.titleThe influence of resin rich volumes on the mechanical properties of glass fibre reinforced polymer compositesen_US
dc.typeArticle
plymouth.issue2
plymouth.volume9
plymouth.journalThe Plymouth Student Scientist


Files in this item

Thumbnail
Thumbnail
Thumbnail

This item appears in the following Collection(s)

Show simple item record

Attribution 3.0 United States
Except where otherwise noted, this item's license is described as Attribution 3.0 United States

All items in PEARL are protected by copyright law.
Author manuscripts deposited to comply with open access mandates are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Theme by 
Atmire NV