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The development of data-driven behaviour generating systems has recently become the focus of considerable attention in the fields of
human-agent interaction (HAI) and human-robot interaction (HRI). Although rule-based approaches were dominant for years, these
proved inflexible and expensive to develop. The difficulty of developing production rules, as well as the need for manual configuration
in order to generate artificial behaviours, places a limit on how complex and diverse rule-based behaviours can be. In contrast, actual
human-human interaction data collected using tracking and recording devices makes human-like multimodal co-speech behaviour
generation possible using machine learning and specifically, in recent years, deep learning. This survey provides an overview of the
state-of-the-art of deep learning-based co-speech behaviour generation models and offers an outlook for future research in this area.
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1 INTRODUCTION

Recent years have seen an increase in the development of systems for the generation of human-like communicative
behaviour. This is driven by the need for socially interactive virtual and robotic agents in various domains. For instance,
artificial agents may range from household service robots to museum guide avatars and social robots in education and
medicine, whose primary function is not only to assist people but to connect with people through effectively producing
social signals [13].

Research has long established a rule-based approach as an advantageous one in human behaviour generation
[12, 109, 141]. However, in light of state-of-the-art developments, major issues in the rule-based approach have been
identified. While it is efficient in producing human behaviours for a single or a limited number of modalities, its is
hampered by the need for explicitly formulating rules, resulting in a practical limit on the number of rules, which
in turn curbs the expressiveness of behaviour [62]. Additionally, rule-based systems typically fall short of producing
multimodal behaviours, as the number of rules increases rapidly when new modalities are added [170]. Recent evidence
∗Corresponding author: anara.sandygulova@nu.edu.kz
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suggests that rule-based models seem to fail when producing natural variations of human behaviour, often because
they do not cover the entire range of behaviour or their naturalness is found to be lacking [125].

In contrast, models that are trained by learning from available corpora of speech, text, audio, and multimodal
data allow for a more robust human-agent interaction, as they can learn correlated behaviour which is difficult or
labour-intensive to capture in rules. For example, it is believed that computational models based on data hold promise
in uncovering the complex relationships between verbal and non-verbal human behaviours [124, 218]. Advances in
the deep learning and machine learning models, and the availability of large datasets have led to a growing interest
in data-driven systems for behaviour generation [85, 111, 228], dialogue systems [173], and speech synthesis systems
[197, 211]. The data-driven approach to interaction design is deemed to improve on the labour-intensive rule-based
approach. Human behaviours are generally produced through various modes that make communication multimodal [7].
Those are primarily speech and different types of bodily gestures such as facial gestures, movements of the head, and
manual (hand, arm, shoulder) gestures [7]. These all play an integral role in conveying social signals and information
[147]. Moreover, the affective states of an interlocutor are consciously or unconsciously communicated by means of
these verbal and non-verbal communicative channels [7]. Data from several studies suggest that robots and virtual
agents able to cause affect in human users are perceived as more vivid and human-like [54, 160].

Compared to other recent reviews [127, 226], this survey intends to take stock of the dynamically expanding field of
co-speech gesture and behaviour generation for anthropomorphic agents, and of the methodological approaches used
for the evaluation of such models. We review existing research on data-driven approaches in verbal and non-verbal
human behaviour generation and cover progress in data-driven communicative behaviour generation from the last five
to six years. Furthermore, this work attempts to identify challenges and directions, and in doing so sets a road-map for
future research in this field.

Section 2 explains the methodology for the review. Sections 3, 4, 5, 6 and 7 are dedicated to reviewing data-driven
models, generating various communicative behaviours that occur in human-human interactions and designed for
human-agent and human-robot interaction scenarios. Section 7 finishes the review and focuses on speech synthesis,
the communicative behaviour in which most resources have been invested for arguably the longest period of time and
which therefore holds essential lessons for data-driven behaviour generation. Section 8 provides an outlook for the field
and concludes the paper.

2 MATERIALS AND METHODS

This paper reviews empirical studies published within the past five to six years (2014-2021), with some exceptions for
studies published between 2011 and 2012, and which were considered relevant for this survey. Moreover, reference lists
of the selected articles and significant review papers were examined to identify other relevant studies for inclusion. A
list of research keywords used in this work are summarized in Table 7 (Appendix A).

A total of 825 records were retrieved from various publication databases. The search result statistics across databases
(i.e., Google Scholar, Scopus, Web of Science, ACM, IEEE) can be seen in Figure 1. After retrieving meta-data about the
papers, the titles and abstracts of all 825 articles were screened to identify the journal articles and conference papers
deserving a full-text review. Papers were withheld when containing appropriate keywords and model descriptions.
The number of articles was reduced to 534 after the exclusion of overlapping titles and abstracts. Thus, a total of 291
publications were carried over to the full-text review stage.

During the full-text review only publications were included according to the following criteria, where a work:
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Fig. 1. Literature selection process.

• introduced a model with the capability of training (which in most cases was a neural network);
• relied on a corpus or dataset for training;
• presented clear evaluation metrics;
• presented test-bed platforms for the proposed models.

A paper was excluded if:

• it was focused solely on rule-based systems;
• it did not describe the evaluation metrics;
• it did not provide information on the dataset and corpora for training and validation.

As a result, of 291 works that were considered in the full-text review, 231 works with no evaluation metrics or
corpora were excluded. Among them were articles describing rule-based models, which were out of the scope of this
survey and hence were removed from the review. The final list of publications thus contained 53 papers meeting the
eligibility criteria. The selected papers are organized according to the type of behaviour presented in separate sections
in this survey. Note that we are agnostic about the form of the agent on which the behaviour is produced: this survey
focuses on the generation of behaviours for both humanoid and non-humanoid robots as well as virtual conversational
agents and avatars.

3 HEAD GESTURES

Head gestures constitute an important part of human body language during communication and co-occur with speech.
Speech-driven head gesture synthesis through data-driven approaches has attracted attention over the last decade.
Unlike rule-based models for gesture synthesis, data-driven models can learn dependencies between data so as to
map a sequence of speech features to meaningful head animations. The related literature shows different frameworks
employing Deep Neural Networks (DNNs) [184], Bi-directional Long Short-Term Memory (BLSTM) networks [172],
and deep generative models [72, 179], which are capable of learning the temporal and cross-modal dependencies of
continuous signals.
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Ding et al. [45] discussed a Deep Neural Network (DNN) for synthesizing head motion from speech features. To this
end, they pre-trained a Deep Belief Network (DBN) [89], using stacked Restricted Boltzmann Machines (RBMs) [178]
with a target layer for fine-tuning the DBN model parameters, creating a DNN model. The objective evaluation criteria
depend on three measures: Canonical Correlation Analysis (CCA) [83], Average Correlation Coefficient (ACC) [159],
and Mean Square Error (MSE) [6] for the differences between predicted head movements with respect to ground truth
movements, where the results show that the generative pre-trained DNN model outperformed the randomly initialized
network trained through back propagation. Furthermore, Ding et al. [47] showed that this DNN model outperformed a
traditional Hidden Markov Model (HMM) approach for head motion synthesis from speech [91] in the CCA analysis.

Ding et al. [46] compared two types of neural network models, BLSTM and feed-forward networks, to learn the
correspondences between speech and head motion. The results show that the BLSTM model significantly reduced the
root mean squared error (RMSE) – of predicted movements with respect to ground truth movements – compared to that
of the feed-forward model that does not converge when the number of hidden layers is bigger than two. Furthermore,
the BLSTM model, with different numbers of hidden layers, achieves a better performance than that of the feed-forward
model in the Canonical Correlation Analysis (CCA) [83]. Over and above, a hybrid network composed of two BLSTM
layers and one feed-forward layer in between, shows a higher performance in objective evaluations and in subjective
evaluation - measuring the naturalness of head motion - than a separate BLSTM model and the other stacked network
architectures.

Haag and Shimodaira [82] presented a bottleneck Deep Neural Network (DNN) architecture, where bottleneck
features – resulting from a DNN model containing a hidden bottleneck layer and trained on the features of speech and
head motion – are used with speech features as input to another DNN model with a BLSTM layer in a forward pass
in order to synthesize head motion. These bottleneck features can capture the dependencies between the features of
speech and head motion curves, which allows for improving the accuracy of generating head movements. They report
that bottleneck features enhanced the performance of the DNN-BLSTM architecture and achieved better scores in the
Canonical Correlation Analysis (CCA) [83] than when they were not present in the architecture.

Greenwood et al. [77] introduced a Bi-directional Long Short-Term Memory (BLSTM) model to predict head motion
from speech and further extended the model through conditioning by a prior motion input in order to limit the possible
head motion predictions for speech. Moreover, they proposed a generative Conditional Variational Autoencoder (CVAE)
[179] using BLSTM models as encoder and decoder to map speech to head motion. This last model allows for predicting
a variety of output head motion curves for the same speech input by sampling from the Gaussian space and conditioning
on speech features.

Sadoughi and Busso [165] presented a conditional Generative Adversarial Network (GAN) [72] with BLSTM cells
for generating head movements for speech segments. It learns, during training, the conditional distributions of head
motion curves and prosodic features of speech. The performance of the proposed model was compared with a Dynamic
Bayesian Network (DBN) [132] and a BLSTM model [46]. The results show that the proposed conditional GAN model
outperformed of the baseline DBN and BLSTM models in terms of the log-likelihood measures as well as in subjective
evaluation.
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Table 1. Corpora1 and evaluation used in the head gesture generation literature

Corpus2 Evaluation
Source Training Test Objective Subjective

Ding et al. [45] Audio-visual dataset
from NBC newscast

93 mins from a tar-
get news presenter, 120
mins from other 10 pre-
senters

10 mins from the target
presenter

Canonical Correlation
Analysis (CCA) [83], Av-
erage Correlation Co-
efficient (ACC) [159],
and Mean Square Error
(MSE) [6]

N/A 3

Ding et al. [46] The MNGU0 articula-
tory corpus [158]

1137 utterances from a
single speaker

63 utterances from the
single speaker

CCA [83] A/B preference test (nat-
uralness) [108]

Haag and Shimodaira [82]4 The University of Edin-
burgh dataset [81]

N/A5 N/A CCA [83] MOS (naturalness)
[156]

Greenwood et al. [77]6 Audio-visual dataset
collected by the authors

1440 utterances from
one actor (~144 mins)

180 utterances from the
actor (~18 mins)

N/A N/A

Sadoughi and Busso [165] The IEMOCAP database
[20]

38 mins from one actor 14 mins from the actor Log-likelihood mea-
sures [64]

Questionnaire, A pair-
wise comparison

Table 1 summarizes the related information to the corpora and evaluation approaches used in the studies covered
in this survey. While most of these studies considered objective measures to evaluate the proposed models, some of
them had subjective evaluations. It is noteworthy that the sizes of the corpora and the scale of evaluations are often
small; therefore, measuring how appropriate the generated head gestures is not always possible, and new metrics
supplementing the existing objective metrics might be needed.

Summary: Head Gestures

• Different data-driven models can be used for successfully generating expressive head motion from
speech, all are likely to achieve a satisfactory level of subjective and objective performance.

• Speech and audio representations for head gesture generation are provided in a number of different
features, such as acoustic (e.g., mel frequency cepstral coefficients (MFCC) [45, 46, 82], linear prediction
coefficients (LPC), the lower representation of speech - FBank), articulatory [82], and prosodic (e.g.,
frequency and intensity of speech) [165].

• Defining a credible metric for the quality and appropriateness of the generated head motion is still an
open challenge.

• The size of the training and test corpora are generally limited, which could affect the quality of the
generated gestures. Creating larger corpora for head gesture generation is likely to be a good investment.

4 FACIAL EXPRESSIONS

The human face is an important channel for non-verbal communication [61]. Most research has focused on facial
animation to express facial affect (or emotions) Pantic [146], and typically use the facial Action Units (AU) schema by
0The reporting of dataset durations for training and test splits from different works in this table and hereinafter was constrained by their availability.
1The reporting of dataset durations for training and test splits from different works in this table and hereinafter was constrained by their availability.
2Each of the following datasets has been processed by the authors to extract the characteristics of speech and head motion in order to train the proposed
models, except in Ding et al. [46] and Sadoughi and Busso [165] where audio-visual data and features are provided [20, 158].
3Not applicable, w.r.t the evaluation metric, a particular metric is not applied in the work.
4The authors did not provide clear information on the size of the training and testing data.
5Dataset sizes are not available.
6Greenwood et al. [77] did not use any objective or subjective measures. Instead, they discussed the characteristics of the generated head motion with
respect to the ground truth.
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Ekman et al. to present facial animations in a numerical manner [50]. Along with the basic emotional model suggested by
Ekman, Facial Action Coding system (FACS) [51] – a systematic method for describing and measuring facial movements
in response to emotions – is leveraged as a common representation of facial affect in most of the works on facial
expression generation. Researchers consider such facial modalities as the gaze, eyebrow actions, head motion [132]
or eye behaviour, mouth, eyebrows, nose, the shape of the face, cheeks, wrinkles, neck and even hair [190] and lip
motion Mancini et al. [130] to contribute to the facial behaviour and expression generation. While the majority of
studies consider facial expressions in close relation to emotions [25, 164], elsewhere research focuses on facial units
regardless of emotions, using the term facial gestures [53, 61]. Generally, facial expression generating models are based
on Dynamic Bayesian Networks (DBN) [132], Generative Adversarial Networks [72] and Long Short-Term Memory
(LSTM) [90]. In this survey, facial expression generation is discussed in two subsections, distinguishing natural facial
behaviours (such as blinking, lip-syncing, etc.) and affective facial expressions.

4.1 Natural Facial Expressions

The following works center around the facial expressions deemed “independent of facial expressions of emotions" such
as raising an eyebrow, winking, shaking the head [53] or blinking and frowning [206].

Taylor et al. [188] proposed to use a SlidingWindowDeepNeural Network (SW-DNN) [103] to generate lipmovements
using the Mel-frequency Cepstral Coefficients (MFCCs) of the speech input from the audio-visual KB-2k [189] speech
dataset. The model was benchmarked against the HMM inversion (HMMI) [66] and was also evaluated subjectively
for perceived realism alongside ground truth (GT) and HMMI, determining the average response rate. As a result, the
SW-DNN model achieved optimal results in generating the output of lip movements and mouth shapes.

van der Struijk et al. [202] developed a generative FACSvatar 7 framework for modelling virtual avatars’ facial
animation based on Facial Action Coding System (FACS) [161] data. The framework enables a data-driven generation
of facial animation through a simple Gated Recurrent Unit (GRU) neural network implemented with Keras8. Input
data was obtained through OpenFace2, which, from FACS-based [51] input, sent AU eye gaze and head rotation to
ZeroMQ in real-time. The subjective evaluation results regarding the generation of facial configurations demonstrated
that the DNN model in the machine learning module requires further improvements. Moreover, the performance of the
FACSvatar framework was tested on several modules, such as CSV offline, Bridge, AU to Blend Shapes, Visualisation in
Unity 3D and Machine Learning. The main limitation of this framework is the shortage of datasets with different AU
intensities, which seems to impede the machine learning process.

Jonell et al. [99] proposed a probabilistic method to generate interlocutor-aware facial expressions using four
modalities: an interlocutor’s acoustic features and facial features as well as the avatar’s acoustic features and existing
facial features. Although the model resembles the MoGlow [87, 105], it differs by using multiple modalities and encoding
each modality by separate networks, such as Multi-layer Perceptrons (MLPs), Recurrent Neural Networks (RNNs) and
1D-convolution networks (CNNs). As an objective measurement, the authors used log-likelihood and its ablations as
well as mismatched sequences. As for the subjective evaluation metrics, a user study used a single question across
five experiments with the participants on their perceptions of the system. The experimental results demonstrated the
significance of multimodal input in generating appealing facial expressions in response to the interlocutor.

7A framework which adds and processes data based on Facial Action Coding System (FACS) [161] in real time.
8See keras.io
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Fig. 2. An illustration of a deep neural model used for generating facial expressions using speech as input, from Karras et al. [101].
The network takes two types of input: half a second of audio and a description of an emotional state. The former (audio) is used to
output the 3D vertex positions of a fixed-topology mesh that correspond to the center of the audio window, while the latter (emotional
state) disambiguates facial expressions and speaking styles.

4.2 Affective Facial Expressions

This subsection focuses on expressive facial animation generation. Research into the affective facial expression generation
in the domain of Embodied Conversation Agents (ECA) has produced some seminal works, such as those by [101, 164],
to name but a few. In the following paragraphs, we elaborate on works that consider emotion information, such as the
six universally recognized emotions suggested by [52] – happiness, sadness, disgust, anger, fear, and surprise – in the
design of facial expression generation models.

Karras et al [101] presented a model based on a deep neural network to generate expressive 3D facial animations
from speech audio (Fig. 2). The emotional states were presented as 𝐸-dimensional vectors 9 fed to the network as a
secondary input. The performance of the proposed model was compared in a subjective user study against video-based
performance capture from the DI4D 10 system and dominance model-based animation produced by FaceFX 11 [39]
as baselines. While the proposed model was outperformed in the naturalness of the output facial animations by the
video-based performance capture model, it showed an outstanding performance over the dominance model. The major
shortcoming of the proposed model was caused by its inability to represent eye motion due to mismatches with the
audio. Therefore, combining the proposed approach with generative neural networks would provide a better synthesis
of such details. While the model succeeded to produce plausible results for several emotional states (e.g., amused,
surprised), a larger dataset might be useful to advance the model further.

Huang and Khan [94] introduced a Dyadic Generative Adversarial Network (DyadGAN) model to generate a partner-
aware facial expression response in dyadic conversations with a virtual agent. The DyadGAN model follows two stages
of GAN; one generates sketch images conditioned on the facial expressions of an interviewee, while the other generates
real facial expressions of an interviewer. Experiments with two quantitative metrics - calculating facial expression
features and canonical expression descriptors - revealed the model’s ability to generate consistent facial expressions
with movements from right to left. The overall results demonstrated that the generated interviewer response was
consistent with the interviewees’ emotions (i.e., joy, anger, surprise, fear, contempt, disgust, sadness, and neutral).

9E is a tunable parameter representing an emotional state to the output of each convolution layer.
10www.di4d.com
11An audio-based facial animation generating system, See www.facefx.com.
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However, the authors emphasize directions for further improvements of the model in terms of using a larger dataset
with multiple interviewers to enable the generalisation to different identities. Another way of enhancement would be
combining the proposed model with a temporal recurrent network, namely, LSTM [90] to obtain video frames of facial
expressions.

Sadoughi and Busso [164] presented a BLSTM [232] trained with speech features (i.e., Mel-frequency Cepstral
Coefficients (MFCCs)) and the extended Geneva minimalistic acoustic parameter set eGeMAPS [57] for emotional
speech-driven lip motion generation designed specifically for conversational agents. The proposed approach relied
on multitask learning (MTL) 12, which created shared representations for the tasks. The study results were measured
objectively through single task learning (STL) 13 and MTL comparison and benchmarked against state-of-the-art
baselines [163, 188]. Moreover, the subjective evaluation used Tukey’s multiple comparisons test to assess the naturalness
of the lip movements. The results demonstrated the advantage of MTL in the generation of lip movements corresponding
to the original sequences, achieving the naturalness of animation. It is noteworthy that the MTL-based framework can
be trained on partial information (i.e., without necessitating the full labelling of data).

Sadoughi and Busso [167] proposed a Conditional Sequential Generative Adversarial Network (CSG) model that learns
the relationships between emotion, lexical content and lip movements using the sceptral and emotional speech features
as conditioning inputs to generate expressive and naturalistic lip movements. Compared against three DNN-based
baselines [59, 163, 188] with the Parzen estimator [72], the model displayed higher log-likelihood and outperformed
other baselines in the objective evaluation. The subjective evaluation results showed a better performance for the CSG
model in terms of the naturalness of the generated lip motions. The generated lip movements were also evaluated for
their ability to convey emotional cues, manifesting that the CSG model allows conveying expressive cues close to the
original recordings.

Otberdout et al. [144] proposed a conditional version of the manifold-valued Wasserstein Generative Adversarial
Network [9] to generate facial expressions of six basic emotions [52] from an image of neutral facial expression. To
evaluate the model both qualitatively and quantitatively, [144] utilized the Oulu-CASIA 14 [234], MUG Facial Expression
[4], and the Extended Cohn Kanade (CK+) [129] datasets. Objective metrics as Peak Signal-to-Noise Ratio (PSNR)
and Structural Similarity (SSIM) [213], Inception Score (IS) [16, 80], Average Content Distance (ACD) 15 [193] and its
variant ACD-I 16 [235] were used to evaluate the model’s performance. The results of both the objective evaluation and
comparison with the baselines (MoCoGAN[193], VGAN[205], TGAN[169]) showed that the proposed model outperforms
the state-of-the-art in video facial expression generation.

Table 2 presents the summary of the corpora and evaluation metrics used in natural and affective facial expression
generation. Corpora-wise, there seems to be large diversity in datasets to train models. In terms of representations, while
some opted for Action Units [25], others relied on readily available large databases of facial expressions [61, 94, 202].
Nevertheless, dataset sizes are not always consistent and sufficient for the completely smooth performance of a model.

12A strategy that jointly solves related secondary tasks.
13A strategy that focuses on solving a primary task only.
14A dataset containing 480 videos of basic emotion labels performed by 80 subjects.
15ACD measures the content consistency of the generated video based on how well the video preserves identity of the input face [144].
16The average distance between each generated frame and the original input frame.
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Table 2. Corpora and evaluation used in the facial expression generation literature

Corpus Evaluation
Source Training Test Objective Subjective

Taylor et al. [188] KB-2k audio-visual
speech dataset [189]

2300 sentences 100 sentences MSE [6] Forced binary choice
test [171]

Karras et al. [101] The emotion database
[101]

5min 1s (9034 frames)
for Character 1, 3min
45s (6762 frames) for
Character 2

57 seconds (1734
frames), 29 seconds (887
frames)

N/A A/B preference test
[108]

Huang and Khan [94] Dyadic video inter-
views of 31 students
[94]

24 hours of video (1000
short video clips)

N/A Euclidean distance [56,
148]

N/A

Sadoughi and Busso [164] The IEMOCAP database
[20]

106 sentences 20% of the whole
dataset

Concordance Correla-
tion Coefficient (CCC)
[163, 192] & Mean
Squared Error (MSE)
[6]

Questionnaire (10-point
Likert scale) using Ama-
zon Mechanical Turk
(AMT)

Sadoughi and Busso [167] The IEMOCAP database
[20]

1,898 samples recordings with 617
speaking turns

Parzen window-based
density estimation [72]

Questionnaire (natural-
ness)

van der Struijk et al. [202] The MAHNOB Mimicry
Database [14]

12 hours (32 recordings) 2.4 hours (6 recordings) N/A Questionnaire (5-point
Likert scale & open
questions)

Jonell et al. [99] MAHNOB Mimicry
database [14] with
spontaneous dyadic
conversations

9.5 hours17 0.74 hour18 (6.5% of the
total dataset)

Log-likelihood values
[64] of the model
using unmodified
and mismatched test
sequences

Questionnaire (percep-
tion)

Otberdout et al. [144] Oulu-CASIA dataset
[234] MUG-Facial
Expression database [4]
Extended Cohn Kanade
(CK+) dataset [129]

80% of the dataset
(384 videos)
1400 videos
327 sequences

20% of the dataset
(96 videos) Geodesic distance

between the generated
expression dynamics,
Inception Score (IS)
[80], Peak Signal-to-
Noise Ratio (PSNR)
[213], Structural Sim-
ilarity (SSIM) [213],
Average Content Dis-
tance (ACD) [144],
ACD-I [235].

N/A

Summary: Facial Expressions

• Data-driven production of facial expressions, also known as facial gestures, has focused on creating
natural (neutral) and affective facial expressions.

• Application domains vary significantly and range from the games industry to HRI.
• In terms of representation, some approaches opt for high-level Facial Action Units and audio-visual
features [25], while others rely on readily available large databases of facial expressions [61, 94, 202]. Yet,
there is an overall lack of more sophisticated datasets, i.e. with a high spatial and temporal resolution,
emotional audio-visual data.

• There is a lack of sophisticated expressive animation rendering toolkits for off-the-shelf production of
facial expressions [167].

5 HAND GESTURES

As a natural mode of interaction, hand gestures carry important functions in human-human communication, such as
maintaining an image of a concrete or abstract object and idea (iconic and metaphoric gestures), pointing and giving

9



469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

, , Oralbayeva et al.

directions (deictic gestures), or emphasizing some parts of the speech (beat gestures) [134]. Hand gestures, including
fingers and arms, also act as an independent modality or part of modalities designed for various virtual agents and
robots, adding expressivity to their motions. This versatility of hand gestures served as an incentive for their application
in such domains as human-computer interaction (HCI) [207] and its related fields - human-robot interaction (HRI) [128]
and human-agent interaction (HAI). In HRI, hand gestures are applied to socially assistive robots (SARs) because of the
expressivity they add to robots’ verbal and non-verbal communication with humans [170]. Besides, hand gestures are
believed to ease the interaction between humans and robotic agents [142].

A considerable amount of research has been conducted on a data-driven generation of hand gestures, utilizing
various databases and displaying a range of architectural choices [113, 194, 228]. For example, the earliest work by Chiu
and Marsella [29] in 2011 made use of Hierarchical Factored Conditional Restricted Boltzmann machines (HFCRBMs)
[30], whereas the most recent works resorted to models such as Long Short-Term Memory networks [85, 186] and a
Variational Autoencoder (VAE) [111], to mention a few. Despite their purely communicative nature, sign language
gestures are not covered in this survey as they rely solely and largely on a visual modality. Thus, in the paragraphs that
follow, we cover the hand gestures that are characteristic of co-speech communication of information.

Chiu and Marsella [29] relied on Hierarchical Factored Conditional Restricted Boltzmann machines (HFCRBMs)
[30] – an extension of Deep Belief Network [89] – to generate hand gestures that are tied to prosodic information.
In particular, the gesture generator function learns the relationship between previous motion frames, audio features
(inputs) and current motion frame (output) to generate hand gesture animations. The model was trained on motion
capture and audio data from human conversation. Particularly, the motion capture data contained joint rotation vectors
with 21 degree of freedom, whereas audio features used prosodic information such as pitch and intensity values. During
the subjective evaluation, three animation types – Original, Generated, and Unmatched – were compared against each
other in a user study. The results demonstrated the naturalness of the movements of generated gesture animations and
the consistency of the motion dynamics with utterances.

Bozkurt et al. [17] presented a speaker-independent framework for joint analysis of hand gestures with continuous
affect attributes, such as activation, valence, and dominance, and speech prosody using Hidden semi-Markov models
(HSMMs) [230]. Moreover, during the synthesis step, prosody feature extraction and continuous affect attributes are
followed by the HSMM-Viterbi algorithm. Gestures in motion capture data were represented by joint angles of arms
and forearms. Consequently, the animation is generated via unit selection applied on a gesture pool with regard to a
multi-objective cost function. Their system was trained on multimodal USC CreativeIT database [135]. Phrase-level
gesture sequences for 1) affect and prosody feature fusion, 2) prosody only, and 3) affect only configurations were
evaluated based on Canonical Correlation Analysis (CCA) scores [83] and symmetric Kullbeck-Leibler (KL) divergence.
Their findings suggest that affect and prosody fusion provides the best correlation with the original gesture trajectories,
and has the best gesture and gesture duration modeling. On the other hand, affect only configuration has the least
kinetic energy difference with the original sequence. Subjective evaluations were planned for their future work.

Takeuchi et al. [186] used deep neural networks with Bi-directional Long Short-TermMemory (BLSTM) [232] to study
the production of metaphoric hand gestures from speech features of audio. During the data pre-processing, the hand
gestures were represented as rotations of bone joints. The network is composed of three non-recurrent layers, a BLSTM
layer, and a final output layer. The first non-recurrent layer takes Mel-frequency Cepstral Coefficients (MFCCs) features
of audio as input, while other non-recurrent layers take independent data. On the other hand, the final output layer
takes the backward and forward recurrence units from the BLSTM layer as input. Thus, the model output - the vector of
prediction - is represented in a BioVision Hierarchy (BVH) format. The objective evaluation, conducted by comparing
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Fig. 3. The outline of the network architecture presented by Hasegawa et al. [85] consisting of five layers.

the final loss results from the proposed model with a simple Recurrent Neural Networks (RNN) implementation, resulted
in significantly better performance of the proposed model. The subjective evaluation of the original, mismatched, and
generated gestures demonstrated significantly lower ratings of the generated gestures than the former two (original
and mismatched) in terms of naturalness, matching in timing, and context. This result, as the authors explain, might be
affected by the gesture motion’s frequent moving.

Hasegawa et al. [85] presented the BLSTM model integrating it with Bi-directional Recurrent Neural Networks (RNN)
[75] to generate co-speech 3D metaphoric hand gestures from speech audio. Specifically, speech audio features were
converted to mel frequency cepstral coefficients (MFCC) features and the joint positions of a whole body were used to
represent the gestures. The network learns the relationship between speech and audio with backward and forward
consistencies. Similar to the model proposed by Takeuchi et al. [186], the architecture consists of five layers shown
in Figure 3. The objective evaluation was performed through Average Position Error (APE)19[117], which displayed
insignificant errors in the left and right wrists in terms of accuracy. Moreover, the user study revealed that the generated
gestures among the three gesture conditions (original, mismatched, and generated) were perceived as significantly
more natural but significantly less time and semantically consistent than original gestures.

Kucherenko et al. [112] presented a novel speech-input and gesture-output Deep Neural Network (DNN) framework
consisting of two steps. First, the network learns the lower dimensional representation of human motion with a
denoising autoencoder neural network. Then, an encoder network SpeechE learns a mapping between speech and a
corresponding motion representation. Kucherenko et al. [112] applied representation learning on top of the DNN model
to make learning from speech and speech-to-motion mapping easier. The objective evaluation compared the proposed
network with the baseline BLSTM model presented in Hasegawa et al. [85] using Average Position Error (APE) 20 [117]
and Motion Statistics21 as metrics for the average distance between the generated and original motion as well as the
average values and distributions of acceleration and jerk, respectively. The proposed model achieved better results
compared to the baseline and demonstrated the plausibility of the generated gestures. A further validation of the results
through a user study confirmed the model’s performance in terms of producing natural gestures.

Ginosar et al. [70] presented a model based on Convolutional Neural Network with General Adversarial Network
(CNN-GAN) and log-mel spectrogram input, which can predict and generate hand gestures from a large dataset of
speech audio [70]. For gesture representation, the authors used skeletal keypoints corresponding to the neck, shoulders,
elbows, wrists and hands, which were obtained through OpenPose [24]. The network learns to map speech to gesture
19APE compares the predicted positions with the original ones that accompany speech and calculates the Euclidean distance.
20Ibid., p. 10
21The average values and distributions of acceleration and jerk for the produced motion.
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using L1 regression, while the adversarial discriminator D ensures that the produced motion is plausible. Using the L1
Regression Loss and percent of correct keypoints (PCK) [225] as objective evaluation metrics, it was discovered that the
proposed model outperformed an RNN-based baseline [176] in gesture generation. Besides, the extent to which the
produced gestures were convincing was measured through a perceptual study applying the percentage of the generated
sequences, labelled as real, as a metric. The result of the comparison between fake (produced by an algorithm) and real
pose sequences did not display any statistical significance.

Yoon et al. [228] deployed a Bi-directional Recurrent Neural Network (RNN) model consisting of an encoder and
decoder for co-speech gesture generation from speech text input. More specifically, the encoder takes the input text,
while the decoder RNN with pre- and post-linear layers generates gestures. The model was trained on the TED Gesture
Dataset [228] to produce four common types of gestures - iconic, metaphoric, deictic, and beat gestures - from both
trained and untrained speech texts. A gesture is represented as a sequence of human poses, namely, joint configurations
of the upper-body. As for the speech text, it is represented as a sequence of words, and each word is encoded as a one-hot
vector that indicates the word index in a dictionary. The results indicated that anthropomorphism and speech-gesture
correlation were the most crucial factors for participants’ perception of the generated gestures, as demonstrated in
the subjective evaluation. The results also showed significance over the three baseline methods measured with BLEU
22 [149]. While the study used only speech text resulting in the weak coupling of the gestures with audio, it could be
improved with audio input.

Ferstl et al. [63] attempted to map speech to 3D gestures through training networks with multiple adversaries to
generate co-speech gestures. The authors extracted MFCC and pitch emphasis (F0) from the recorded speech and used
upper-body joint positions to represent the gestures. The model architecture consists of a two-layer recurrent network
composed of Long Short-Term Memory [90] cells and a feed-forward layer for input processing. Moreover, a Gated
Recurrent Unit (GRU) [32] propagates the input for faster training purposes in producing joints. The novelty of the
model lies in the training of the recurrent network with multiple generative adversaries instead of a standard regression
loss. Drawing on the objective evaluation measured by the accuracy of the binary cross-entropy objective for each
discriminator, the authors report the effectiveness of discriminators in solving a distinct sub-problem in the gesture
generation task.

Tuyen et al. [194] employed a conditional extension of the Generative Adversarial Network (CGAN) [72] with an
additional input condition. The GAN network includes convolutional Generator (G) and Discriminator (D) networks.
Altogether, the model generates communicative gestures by synthesizing the verbal content of speech. Here, the gestures
were represented as human joint configurations. The objective evaluation was carried out through covariance with
temporal hierarchical construction [95]. Overall, the results illustrated the successful training of the model to imitate
hand gestures that corresponded to the meaning of an utterance, which matched the iconic gestures by definition [134].

Lee et al. [118] introduced a temporal neural network, trained with Inverse Kinematics (IK) loss to generate finger
motions and hand gestures taking upper body joint angles and audio as input from a multimodal 16.2-million-frame

(16.2M) dataset [118], created alongside the model. The audio features included frequency (e.g., pitch, jitter), energy,
amplitude (e.g., shimmer, loudness), and spectral features. The IK was applied to LSTM [90], Variational Recurrent
Neural Network (VRNN) [35], and Temporal Convolutional Network (TCN) [198] to incorporate kinematic structural
knowledge. The ablation study results demonstrated the advantages of IK loss function contrary to joint angle loss,

22A method for automatic evaluation of machine translation.
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whereas the subjective evaluation yielded positive results with respect to the proposed model and its capability to
generate natural human-like finger gestures.

Table 3. Corpora and evaluation used in the hand gesture generation literature

Corpus Evaluation
Source Training Test Objective Subjective

Chiu and Marsella [29] Conversational dataset
[55]

38 seconds
(1140 frames)

53 seconds
(1591 frames) N/A23 Motion-speech match-

ing task
Bozkurt et al. [17] USC CreativeIT data-

base [135]
recordings of 15 actors
24

recordings of 1 actor (2-
10 minutes)

Canonical Correlation
Analysis (CCA) [83];
symmetric Kullback-
Leibler (KL) divergence
[115]

N/A

Takeuchi et al. [186] Gesture-speech dataset
[187]

106.95 minutes (530 sen-
tences)

9.69 minutes (59 sen-
tences)

Comparison of final loss
to the baseline RNN re-
sults

Questionnaire (7-point
Likert scale)

Hasegawa et al. [85] Gesture-speech dataset
[187]

143 minutes25 (767 sen-
tences)

16 minutes26 (90 sen-
tences)

Average Position Error
(APE) [117]

Questionnaire (natural-
ness, time consistency,
and semantic consis-
tency)

Kucherenko et al. [112] Gesture-speech dataset
[187]

171 minutes 20 minutes Average Position Error
(APE) [117]

Rating of statements
on 7-point Likert-scale
(naturalness, time con-
sistency, and semantic
consistency)

Ginosar et al. [70] Person-specific video
dataset [70]

115.2 hours 14.4 hours (2048 inter-
vals)

L1 Regression Loss27
and percent of correct
keypoints (PCK) [224]

Questionnaire (real vs.
fake), pairwise compari-
son

Yoon et al. [228] TED Gesture Dataset
[228]

52 hours N/A 28 N/A Questionnaire (an-
thropomorphism by
Godspeed, likeabil-
ity, speech-gesture
correlation)

Ferstl et al. [63] Natural speech and 3D
motion dataset [63]

3.75 hours (226minutes) 6.5 minutes Accuracy of the binary
cross-entropy objective

N/A

Tuyen et al. [194] KIT whole-bodymotion
database [131]

20 optical markers in 3D 5, 136 usable annotation
samples

Covariance with tem-
poral hierarchical con-
struction [95]

N/A

Lee et al. [118] 16.2-million-frame
(16.2M) dataset [118]

120 minutes of multi-
modal data

N/A MSE29 [6] Questionnaire (richness
of motion, naturalness,
personal motion charac-
teristics, 5-point Likert
scale)

Table 3 presents the summary of the corpora and evaluation metrics employed in the studies above. The majority
of studies relied on both objective and subjective evaluation criteria, while a few studies either used objective [194]
or subjective evaluation criteria [96, 228]. To sum up, the works reviewed here demonstrate the prevalence of speech
input data among data modalities used for hand gesture generation. Model-wise, recent research [63, 85] shows a
comprehensive exploration of recurrent networks to capture the dynamics of human motion, which excel at solving
gesture generation tasks. That being said, an omnipresent limitation of such models lies in the dearth of gesture-rich
datasets required to enable a robot to produce a wide range of hand gestures as opposed to certain predefined gestures
produced with sparse datasets [29]. Interestingly, the training and test sets used in [29] seem arguable considering the
25Not applicable, ibid., p. 5
26Each recording lasts about 2-10 minutes [135]
27The authors used L1 regression loss as a quantitative evaluation metric to compare the model’s performance against the baselines.
28Not applicable, ibid., p. 5
29As a quantitative measure, the authors computed MSE values.
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training and test set sizes used in other works. Thus, the following section reviews the existing state-of-the-art on
models that consider other body parts along with hands, hence outputting appropriate behaviours.

Summary: Hand Gestures

• Data-driven generative models for hand gestures aim to generate four types of gestures – beat, deictic,
iconic and metaphoric – but struggle with the latter two as semantics are often poorly modelled.

• Hand gesture production relies on input which can consist of text, prosody, affect or contextual in-
formation, or a combination of some or all of these. Hand gestures are typically represented by joint
rotations [29], joint angles of arms and fore-arms [17], rotations of bone joints [186], joint positions of
a whole body [85], skeletal keypoints [70], human pose sequences [228], upper-body joint positions
[63], joint configurations [194], upper-body and finger joints [118]. Speech and audio features are
mostly represented as acoustic (e.g., MFCCs, pitch, jitter) [85, 112, 118], prosodic (e.g., pitch, intensity,
confidence to pitch) [17, 29, 63, 112], phonemic features [186], verbal content of speech [194], and energy
and amplitude [118].

• The generated gestures often look natural, but the match to the spoken content is not yet good enough.
Generating semantically matched hand gestures remains a challenge.

• Two important limitations are the scope of datasets and the lack of diversity. Most studies use single-
speaker datasets, with English being the dominant language across corpora. Interactive applications
would benefit from dyadic or multiparty datasets. Cultural diversity and appropriateness would benefit
from datasets from other languages and cultures.

6 MULTIMODAL GESTURES

In this survey, we define multimodal gestures when referring to the multimodality of the output. In particular, we refer
to the interpretation of multimodal output by Rojc et al. [160], who emphasized the importance of synchronisation of
generated non-verbal gesture types (facial expressions, head, hands, and body) with verbal (speech audio or video) in
an attempt to make the interaction more natural and fluent. Therefore, the generation of such multimodal outputs as
head and facial movements synchronized with speech [26, 48, 58, 132] or body behaviours involving shoulder and torso
along with facial movements [31, 49, 113] accompanied with speech will be discussed in this section.

An audiovisual model by Mariooryad and Busso [132] relied on three joint Dynamic Bayesian Networks (jDBNs)
to generate facial gestures, involving head and eyebrow movements, by mapping the acoustic speech data from the
IEMOCAP database [20] to Facial Animation Parameters [145]. The model was trained by adapting the algorithms
used for HMM and FHMM [68]. Using the Canonical Correlation Analysis (CCA) [44, 83], the joint DBN model was
compared to similar models used to synthesize head and eyebrow motions separately. Overall, the objective evaluation
results revealed that the jDBN models can cope with speaker variability, while the subjective results showed an increase
in the quality of jointly modeled eyebrow and head gestures as well as their naturalness.

Ding et al. [48] proposed an animation model of a virtual agent, based on a fully parameterized Hidden Markov
Model (HMM), which produces head and eyebrow movements in synchronisation with speech. As an extension of
the contextual HMM, in FPHMM [216], contextual variables control and parametrize the means, covariance matrices,
transition probabilities as well as initial state distribution. The model was evaluated objectively and subjectively on
the Biwi 3D AudioVisual Corpus of Affective Communication database [60], considering facial motion and speech
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features. An objective evaluation, compared with the baseline proposed by [132] using the Mean squared error (MSE)
[6] demonstrated the best performance by the HMM-based joint model. Overall, the proposed model demonstrated
an ability to capture the link between speech prosody and head and eyebrow motions. Subjectively, the perceptual
questionnaire struggles to validate the objective evaluation as the results were marginally significant, showing quite
identical performance in terms of expressiveness.

Ding et al. [49] presented a multimodal behaviour generation model based on the contextual Gaussian model and a
Proportional-Derivative controller (PD). They leveraged the AVLaughter database [196] for producing multiple outputs
(lip, jaw, head, eyebrow, torso and shoulder motions) synchronized with laughter audio. Using the pseudo-phonemes
and speech features as input, motion synthesis was carried out in three steps: first, the lip and jaw motions were
synthesized by a contextual Gaussian module (CGM); second, speech features were extracted for predicting head and
eyebrow movements, consequently, torso and shoulder motions were synthesized from the previous step of synthesis
by concatenation. The sophisticated subjective evaluation of the generated laughter and bodily behaviours, using a
questionnaire adapted from [143] and Likert-scale rating, manifested users’ preference for an agent which produces
synchronized speech and laughter animations.

Chiu andMarsella [31] introduced a combined model to learn a twofold mapping: from speech to a gestural annotation
using Conditional Random Fields (CRFs) and from gestural annotation to gesture motion by applying Gaussian Process
Latent Variable Models (GPLVMs) [208]. The model was subjectively evaluated against the approach by [29], which used
direct mapping. The subjective evaluation was followed up by an objective assessment to establish the performance
of the model against support vector machines (SVMs) [42]. As a result, the proposed method performed significantly
better in generating and coupling the gestures with speech, despite the hurdles of the inference model that requires
temporal information.

Fan et al. [58] discussed the use of deep Bi-directional Long Short-Term Memory (DBLSTM) [232] to model the
temporal and long-range dependencies of audio/visual stereo data for a photo-real talking head animation from audio,
video, and text input. To train the network, the study used back-propagation through time algorithm (BPTT) [214, 215].
The study demonstrated the advantages of two BLSTM layers sitting on top of one feed-forward layer on the datasets.
As a result of objective (RMSE [73, 162, 209] and CORR [215]) and subjective evaluation (A/B preference test [108]), the
proposed deep BLSTM model showed higher performance compared with the previous HMM-based approach.

Li et al. [123] adopted a deep Bi-directional Long Short-Term Memory (DBLSTM) [232] recurrent neural network
as a regression method to generate audiovisual animation of an expressive talking face. This method was devised to
overcome the shortcomings of the previous state-of-the-art models in incorporating lip movements with emotional facial
expressions. Thus, Li et al. [123] proposed five methods based on DBLSTM trained using a large corpus of neutral data
and a smaller scale corpus of emotional data. Specifically, in method (a), the DBLSTM network is trained with emotional
corpus only; method (b) and (c) capture neutral and emotional information simultaneously by training a single DBLSTM
network; while method (d) and (e) capture neutral information by a separate DBLSTM network in addition to emotional
DBLSTM. To evaluate the proposed approaches, the authors adopted root mean squared error (RMSE) between the
predicted Facial Animation Parameters (FAP) and ground truth. This revealed how different regression models worked
for different emotions. Notably, information from the neutral dataset was found more valuable for peaceful expressions
(e.g., sadness) than exaggerated expressions (e.g., surprise and disgust). A further frame-wise comparison of RMSE
values displayed the effectiveness of the proposed methods in modelling the interaction between emotional states,
facial expressions and lip movements. Finally, the subjective evaluation results confirmed the effectiveness of using the
neutral dataset as it can improve the performance of an expressive talking avatar.
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Suwajanakorn et al. [183] used recurrent neural networks to learn the mapping from raw audio input (MFCC audio
features) to lip landmarks (PCA), synthesizing lip textures and then merging them into the 3D face to output a realistic
talking head with clear lip motions synced with the input audio. The network consisted of LSTM nodes and was
trained using backpropagation through time with 100 time steps. When compared against AAM approach [41] and
Face2Face algorithm [191] in an objective evaluation, the proposed method synthesized cleaner and more convincing
lip movements.

Chung et al. [37] proposed an encoder-decoder CNN-based Speech2Vid model, taking still images and audio speech
segments to output a video of the face, including lip synchronized with the audio. The architecture constitutes three
modules, such as the audio encoder, identity encoder, and image decoder, which were trained together. Learning the joint
embedding of the target face and speech segments is central to this approach in generating a talking face. Evaluations,
conducted to qualitatively measure the quality using the alignment and the Poisson editing [150] techniques, determined
the ability of Speech2Vid to generate videos of talking faces with certain identities.

Chen et al. [26] developed a method that takes speech audio and one lip image of a target identity as input and
generates an output of multiple lip images with the accompanying speech audio. The model is designed by combining
correlation networks with an audio encoder and an optical flow encoder, implemented on 3D RNN to mitigate delayed
correlation problems. The generated lip movements were evaluated quantitatively and qualitatively on the GRID [40]
corpus, LRW [36] and LDC [157] dataset, not used previously for training purposes, as well as with different metrics -
LMD, CPBD [140], and Structural Similarity (SSIM) and Peak Signal-to-Noise Ratio (PSNR) [213]. The proposed model
generated realistic lip movements and proved their robustness to view angles, lip shapes, and facial characteristics.
However, the main limitations are bound to learning from a single image, which resulted in difficulties in capturing lip
deformations.

Plappert et al. [153] introduced a model based on deep Recurrent Neural Networks (RNNs), and sequence-to-sequence
learning [182], which learns a bi-directional mapping between whole-body motion and natural language. One model is
fed the encoded motion sequences obtained from motion capture recordings during training, and the other is trained on
natural language descriptions to generate whole-body motions. Based on the quantitative comparison with the baseline
model, the language-to-motion model demonstrated the capability of generating proper human motion, achieving
higher performance rates. The performance of the model was also measured by BLEU scores [149], which suggested
minimal overfit and generalisation to previously unseen motions. The model showed a capability to generate whole
body motions given proper descriptions in natural language.

Alexanderson et al. [5] adapted a deep learning-based MoGlow [87] for a probabilistic speech-driven model to
output full-body gestures synced with speech. Particularly, the normalising flows were used the same way as GANs to
generate output by a nonlinear transformation of latent noise variables. Thus, four models were trained on a speech-only
condition, while the other four were conditioned on style control. The model was compared against three baselines
taking the same speech representation as input: unidirectional LSTM [90], conditional variational autoencoder (CVAE)
[77], and the audio-to-representation system (ARP) [112]. While the subjective evaluation of the style control experiment
yielded significant results in favor of the MoGlow-based model for the human-likeness of the gesticulation, the model
trained on speech only achieved better results compared to the second baseline.

Dahmani et al. [43] used a conditional generative model based on a variational auto-encoder (VAE) framework for
expressive text-to-audiovisual speech synthesis. The proposed model learns from textual input, which provides the
VAE with embedded representation to further capture emotion characteristics (Fig. 4). Although the experimental
results showed a high recognition rate for almost all emotions in audiovisual animations, sadness and fear turned
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Fig. 4. The architecture of the audiovisual model for animation generation by Dahmani et al. [43].

out to be the hardest to recognize by participants. According to the authors, this was explained by the role of the
upper part of the face, thus causing a potential limitation of the study. Overall, the model performed well in terms of
producing nuances of emotions as well as generating emotions beyond those retrieved from the database as illustrated
by subjective evaluation results.

Kucherenko et al. [113] presented a deep learning-based model that takes audio and text transcriptions as input data
to generate arbitrary (metaphoric, iconic, and deictic) and semantically linked upper-body gestures together with speech
for virtual agents. The model was evaluated on The Trinity Speech-Gesture Dataset [62] using the RMSE, acceleration
and jerk, and acceleration histograms as objective metrics. A binomial test was used for the analysis of data obtained
from the perceptual questionnaire and attention check. Altogether, the evaluations demonstrated a preference for the
proposed model (no PCA) over the CNN-GAN model introduced by Ginosar et al. [70] in terms of human-likeness
and speaker reflection. The evaluation results also highlighted the efficacy of the multiple modalities used to train the
model.

Yoon et al. [227] discussed an end-to-end model that takes speech text, audio, and speaker identity to generate
upper-body gestures, co-occurring with speech and its rhythm. The proposed method is based on Bi-directional GRU
[32] along with recurrent neural networks used for encoding three different input modalities. The ablation study
demonstrated that all three modalities had a positive effect on the generation of gestures. Overall, the proposed model
performed well as identified by a novel objective evaluation metric called Fréchet Gesture Distance (FGD) [88], subjective
user study and in comparison to other state-of-the-art models. Despite the superiority of the proposed model over
baselines, the main disadvantage still remains the demand for a large dataset as the generated motion quality and
upper-body gestures were limited to the dataset used in the study. Additionally, the gesture generation process lacks
controllability. Other limitations regard the FGD, which made it atypical to analyze mixed measurements of motion
quality and diversity.

Ahuja et al. [3] presented a Mixture-Model guided Style and Audio for Gesture Generation (Mix-StAGE) model which
trains a single model for multiple speakers while learning unique style embeddings for each speaker’s gestures in an end-
to-end manner. A novelty of Mix-StAGE is to learn a mixture of generative models which allows for conditioning on the
unique gesture style of each speaker. The model used a Temporal Convolution Network (TCN) module for both content
and style encoders. It is trained on a custom-made dataset PoseAudio-Transcript-Style (PATS) designed specifically
for this work. In the experimental study, the Mix-StAGE model was compared against existing baselines capable of
generating similar co-speech gestures (i.e., single speaker models Speech2Gesture [70], CMix-GAN and multi-speaker
models MUNIT [92], StAGE). The results of the objective evaluation revealed that the Mix-StAGE model significantly
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outperformed the state-of-the-art approaches for gesture generation and provided a path towards performing gesture
style transfer across multiple speakers. Perceptual studies also showed that the generated animations by the proposed
model were more natural whilst being able to retain or transfer style.

Wang et al. [210] introduced an integrated deep learning architecture for speech and gesture synthesis (ISG) model
to synthesize two modalities in a single model, compatible with both social robots and embodied conversational
agents (ECAs). The proposed model is adapted from Tacotron 2 [174] and Glow-TTS [102], with Tacotron 2 being
auto-regressive and non-probabilistic and Glow-TTS being parallel and probabilistic, and takes text as input to generate
speech and gesture. Subjective tests performed separately for each modality demonstrated that one of the proposed ISG
models (ST-Tacotron2-ISG) performs comparably to the current state-of-the-art pipeline system while being faster and
having much fewer parameters.

Huang et al. [93] proposed a fine-grained Audio-to-Video-to-Words framework, called AVWnet, which is deemed to
produce videos of a talking face in a coarse-to-fine manner and maintain audio-lip motion consistency. The framework
architecture consisted of tree-like architecture and a GAN-based [72] neural architecture for synthesizing realistic
talking face frames directly from audio clips and an input image. The GAN framework is conditioned on image features
to enable further fusion of facial features and audio information in generating the face video. Compared with the
state-of-the-art approaches [27, 37], the performance of AWVnet excelled on all three adopted metrics and datasets as a
result of objective evaluation. Metrics such as Structural Similarity Index (SSIM), Peak Signal-to-Noise Ratio (PSNR),
and Landmark Distance Error (LMD) were used to evaluate the model objectively. A comparison of the proposed model
with the model by Chen et al. [27] through perceptual user study revealed the former to be as good as the existing
model.

Zhou et al. [236] presented a model that learns from disentangled audio-video representations to generate a talking
face corresponding to speech. Both talking video and audio were used to train the Disentangled Audio-Visual System
(DAVS). The DAVS network demonstrated several advantages over the previous baseline [36], which encompass the
improvement of lip-reading performance, unification of audio-visual speech recognition and synchronisation in an
end-to-end framework, and the achievement of a high-quality and temporally accurate talking face generation as a
result of both subjective user study and effectiveness verification by Peak Signal-to-Noise Ratio (PSNR) and Structural
Similarity (SSIM) [213].

Sadoughi and Busso [166] demonstrated a Constrained Dynamic Bayesian Networks (CDBN) [132], to overcome the
individual limitations of rule-based and data-driven approaches in gesture generation. The authors aimed to build a
generative model to produce believable hand gestures along with head gestures with bimodal audio-speech and video
data synchronisation. The model was evaluated by two objective metrics: canonical correlation analysis (CCA [21, 83])
and log-likelihood rate (LLR) [136]. Based on the results of the subjective evaluation, the CDBN model is perceived to
generate more appropriate and natural gestures compared to baseline models. Overall, the hand gestures generated by
the constrained model showed 85% accuracy for certain types of gestures.

Vougioukas et al. [206] discussed the GAN-based talking face generator, consisting of a temporal generator and
multiple discriminators, which takes a single image and raw audio signals as input. The quality of the generated video
output was evaluated on the GRID [40] corpus, TCD TIMIT [84] corpus, CREMA-D [23] and LRW [36] datasets by
applying reconstruction (Peak Signal-to-Noise Ratio and Structural Similarity [213]), sharpness (cumulative probability
blur detection (CPBD) measure [139]), content (average content distance (ACD) [193] and word error rate (WER)), and
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audio-visual synchrony metrics. When assessed subjectively, the results of the Turing test 30 showed naturalness of the
generated faces. Moreover, compared to baselines [37, 183], the model demonstrated an ability to not only capture and
maintain identity but generate facial expressions matching the speaker’s tone and speech.

Sinha et al. [177] approached the generation of identity-preserving and audio-visually synchronized 2D facial
animation through GAN, utilizing DeepSpeech features, given an audio input of speech, and facial landmarks from the
benchmark corpora as GRID [40] and TCD-TIMIT [84]. Same objective evaluation metrics as in [26] were used in the
study. Moreover, a qualitative evaluation compared the model with the state-of-the-art baselines of [26], [206], and
[236]. These evaluations yielded overall positive results regarding identity preservation, superior image quality and
texture clarity, and smooth audio-visual synchronisation.

Tables 4 and 5 summarize the state-of-the-art inmultimodal gesture generation, concerning the corpora and evaluation
metrics used. Even though studies emphasize objective evaluation as a challenging task, the existing literature shows
effective and nuanced exploitation of objective metrics along with subjective ones. Note that objective metrics are often
the same as the cost functions used to optimise the generative models, with authors assuming that optimising the cost
functions equates with improving the model’s performance. However, for now subjective measures remain the gold
standard for assessing the quality of the generated behaviour and this is recognised across the field..

Summary: Multimodal Gestures

• Multimodal gesture generation creates an opportunity for a holistic approach to generating social
behaviour, and improves over generating isolated behaviours (e.g., hand gestures, speech synthesis).
Early demonstrations exist combining speech and hand gestures, and speech and body behaviours, to
mention but a few.

• Future developments are expected to broaden the scope of multimodal gesture generation. Potential
low-hanging fruit is using or predicting emotional states, e.g. from audio, to produce corresponding
communicative behaviour [183], and moving towards gestures driven by semantic content [5, 113].

• In most multimodal generative systems, the different modalities are still considered in isolation. Building
a flexible system that is able to jointly generate whole-body gestures, from and with verbal cues, remains
a challenge [183, 227].

7 SPEECH SYNTHESIS

Speech is often a prime aspect of interactive communication, and in embodied systems often co-occurs with gestures.
Recent years have seen active development of data-driven models for synthesizing speech from input text (Text-to-
Speech (TTS) synthesis) using various deep learning models. Most speech synthesis approaches in the literature focused
30https://forms.gle/XDcZm8q5zbWmH7bD9
31The authors did not provide details on the sizes of training and test sets.
32Not applicable, ibid., p. 5
33The authors used the qualitative observation for evaluation.
34The type of qualitative metric used to measure the naturalness is not provided.
35This duration is an approximation.
36This duration is an approximation.
37In line with [112], the authors opted to use these metrics to measure the quality of the generated gestures.
38The exact duration for the training and test splits, other than that each sample contained a one-second video with the target word spoken, are not
provided.
39https://forms.gle/XDcZm8q5zbWmH7bD9
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Table 4. Corpora and evaluation used in the multimodal gesture generation literature

Corpus Evaluation
Source Training Test Objective Subjective

Mariooryad and Busso [132] IEMOCAP database [20] 75% out of 418 utter-
ances

25% out of 418 utter-
ances

Canonical correlation
analysis (CCA) [83]

Questionnaire (speaker-
dependent and speaker-
independent, 5-point
Likert scale)

Ding et al. [48] Biwi 3D AudioVisual Corpus of
Affective Communication database
[60]

80% out of 240 se-
quences

20% out of 240 se-
quences

MSE [6] Questionnaire (5-point
Likert scale)

Chiu and Marsella [31] Audio and body motion perception
dataset [55]

193 seconds 238 seconds N/A Questionnaire

Fan et al. [58] Audio-visual database of a talking
subject [58]

80% out of 81974 images
(20000 images)

10% out of the total data-
base

RMSE (shape) [209];
RMSE (texture) [162];
RMSE (appearance)
[73]; CORR [215]

A/B preference test (nat-
uralness) [108]

Ding et al. [49]31 AVLaughterCycle database [196] N/A N/A N/A Questionnaires, riddles,
smiles, laughs [143]

Li et al. [123] eNTERFACE’05 emotion database
[133]; Neutral dataset [123]

608 seconds (10.1 min)
1280 seconds (21.4 min) 24 seconds Root mean squared er-

ror (RMSE)
Questionnaire (5-point
Likert scale)

Suwajanakorn et al. [183] Video addresses of Obama [183] 14 hours 3 hours Consistency (with and
without re-timing)

N/A 32

Chung et al. [37]33 VoxCeleb dataset [138]
LRW dataset [36] 37.7 hours 0.5 hours N/A Image

naturalness, movement
naturalness 34

Chen et al. [26]
GRID dataset [40]
LDC dataset[157]
LRW dataset [36]

37.5 hours
159.8 hours
6.4 hours

1.3 hours
7.8 hours
1.2 hours

LMD, CPBD [140],
Structural Similarity
(SSIM), Peak Signal-
to-Noise Ratio (PSNR)
[213]

N/A

Plappert et al. [153] KITMotion-Language Dataset [152] 80 % of the total dataset,
(2 846 motion samples;
6 187 natural language
annotations)

10% of the total dataset BLEU scores [149] N/A

Alexanderson et al. [5] The Trinity Gesture Dataset [62] 20,665 samples of data 400 seconds N/A Cross-comparison rat-
ing, questionnaire

Dahmani et al. [43] The ESTER database [76] 3h1235 (1600 sentences)
4h836 (2400 sentences)

200 sentences
300 sentences N/A Preference test

Kucherenko et al. [113] The Trinity Speech-Gesture dataset
[62]

70 sequences of aligned
text, audio and gestures
per each training

20 minutes (50 seg-
ments of 10 seconds
each)

Average values of
RMSE, acceleration and
jerk (rate of change of
acceleration), and accel-
eration histograms37

Questionnaire, atten-
tion check

Yoon et al. [227] TED Gesture Dataset [228] 97 hours (199,384 se-
quences/766 videos)

25,930 sequences Fréchet Gesture Dis-
tance (FGD) [88]

Pairwise comparison

Wang et al. [210] Trinity Speech-Gesture Dataset [62,
114]

10.6 minutes N/A N/A Multiple Stimuli with
Hidden Reference
and Anchor interface
(MUSHRA) [19], Mean
Opinion Score (MOS),
Questionnaire

on neutral speech, while some considered generating affective speech. In the next part, we will give an overview of
some important and commonly used speech synthesis systems.

7.1 Neutral Speech Synthesis Systems

WaveNet: van den Oord et al. [197] discussed a system based on the PixelCNN decoders [199, 200]. The proposed model
uses dilated causal convolutional layers to ensure that the conditional probability of an audio sample at a particular time
step is not dependent on samples at future time steps (but only on previous time steps)40. Moreover, the model uses
residual block and skip connections to accelerate convergence during the training of the network [86]. The results show

40In WaveNet, it is possible to condition the model on additional inputs like the speaker identity in case of a multi-speaker setting.
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Table 5. Corpora and evaluation used in the multimodal gesture generation literature (continued)

Corpus Evaluation
Source Training Test Objective Subjective

Huang et al. [93] GRID dataset [40]
LRW dataset [36] 1000 video samples 50 video samples Structural Similarity In-

dex (SSIM), Peak Signal-
to-Noise Ratio (PSNR)
[213], and Landmark
Distance Error (LMD)
[26]

Questionnaire (5-point
Likert scale)

Zhou et al. [236] LRW dataset [36] 800 samples 50 samples 38 PSNR and SSIM [213] Questionnaire (true or
false)

Sadoughi and Busso [166] The MSP-Avatar
corpus[168]

2 hours 58 minutes (74
sessions)

734.4s for affirmation,
1118.7s for negation,
1149.1s for question,
1582.5s for suggestion,
6111.7s for other

CCA [21, 83] and log-
likelihood rate (LLR)
[136]

Questionnaire (5-point
Likert scale)

Vougioukas et al. [206]

GRID corpus [40]
TCD-TIMIT corpus [84]
CREMA-D dataset [23]
LRW dataset [36]

26h4
9h1
9h7
36h3

8h31
1h2
0h68
1h9

PSNR, SSIM[213],
cumulative probability
blur detection (CPBD)
[139], average con-
tent distance (ACD)
[193], word error rate
(WER) [107], Euclidean
distances [38]

Online Turing test39

Sinha et al. [177] GRID corpus [40]
TCD TIMIT dataset [84]

26.4 hours
9.1 hours

8.31 hours
1.2 hours PSNR, SSIM[213];

CPBD [139]; LMD [26]
Questionnaire (10-point
Likert scale)

that the WaveNet speech synthesizer achieved a better Mean Opinion Score (MOS) [156] in terms of the naturalness of
the generated speech samples than that of the LSTM-RNN-based statistical parametric speech synthesizer [231] and the
HMM-driven unit selection concatenative speech synthesizer [71] in addition to higher subjective preference scores.
This model was further improved to Parallel WaveNet [201] that can generate more than one audio sample at a time
while keeping a similar quality to – but is largely faster than – the original WaveNet.

Tacotron: Wang et al. [211] presented a system based on a sequence-to-sequence (seq2seq) model [11, 182] with
an encoder that encodes input character embeddings into context vectors, an attention-based decoder [11, 204] that
turns the encoder final representation into a Mel-scale spectrogram, and a CBHG41-based post-processing net that
converts spectrogram frames to waveforms using the Griffin-Lim reconstruction algorithm [78]. The results show that
the Tacotron model achieved a better Mean Opinion Score (MOS) [156] in terms of speech naturalness than that of
the parametric speech synthesis system [231], and a marginally lower score than that of the concatenative speech
synthesis system [71], which is a promising result considering the audible artifacts produced by the Griffin-Lim synthesis
approach. This opened the door to another improved version of the system; Tacotron 2 [175], which is a combination
of convolutional and recurrent neural networks and WaveNet vocoder (derived from the WaveNet architecture [197]).
This model outperformed the parametric, concatenative, Tacotron (Griffin-Lim), and WaveNet text-to-speech systems
in subjective evaluation.

Deep Voice: Arik et al. [8] discussed a system for speech synthesis, where each model of the system is based on
an independently trained deep neural network. The main sub-models of the system have the following functions:
segmenting voice for calculating phoneme boundaries, in the training pipeline only, using a recurrent architecture with
connectionist temporal classification loss [74], in addition to converting grapheme (text)-to-phoneme using encoder

41CBHG is an efficient module for calculating sequence representation. It consists of a one-dimensional convolutional filters’ bank, highway networks
[181], and a Bi-directional Gated Recurrent Unit (GRU) net [34].
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and decoder with Gated Recurrent Units (GRU) [32], predicting phoneme duration and fundamental frequency, and
synthesizing audio based onWaveNet architecture [197] with a bi-directional Quasi-RNN (QRNN) conditioning network
[18] in both the training and inference pipelines. The results show relatively lower (but promising) Mean Opinion
Scores (MOS) [156] for the synthesized audio with respect to ground truth recordings. This opened the door to other
improved/novel42 multi-speaker versions of the system; Deep Voice 2 [69] with a high quality of synthesized audio
that outperforms that of the Deep Voice synthesis system, and Deep Voice 3 [151] that outperforms Deep Voice 2 and
Tacotron (Griffin-Lim), while it has a similar performance to Tacotron 2 in case both are using WaveNet vocoder.

VoiceLoop: Taigman et al. [185] introduced an approach for speech synthesis inspired by the working memory
model; the phonological loop [10]. An input sentence (text) to the model is represented as a set of phonemes, where
each phoneme is represented through an embedding vector. These vectors are weighted and summed to create a context
vector using attention weights. The model uses a memory buffer, which is updated by a new, speaker-dependent,
representation vector, at each time step, calculated with a shallow fully connected network that has as input: the
context vector with speaker embedding, and both the output and buffer vectors at the previous time step. The output of
the model is calculated through another network of the same architecture that has as input the buffer vector at the
current time step with speaker embedding. The results show that the VoiceLoop model outperformed the Tacotron and
Char2Wav [180] models in the Mean Opinion Scores (MOS) [156] – subjective evaluation – and Mel Cepstral Distortion
(MCD) scores – objective evaluation – in single and multi-speaker speech synthesis.

WaveGlow: Prenger et al. [155] proposed a flow-based network capable of generating high-quality speech from
mel-spectrograms. Following the examples of Glow [106] and WaveNet [197], the WaveGlow produces efficient and
high-quality audio without the need for auto-regression. An experimental study is conducted to subjectively compare
the proposed model against two baselines, such as the Griffin-Lim [79] algorithm and WaveNet [197], using the Mean
Opinion Scores (MOS) [156] as a metric. The results showed that WaveGlow delivers audio quality as good as the best
publicly available WaveNet implementation trained on the same dataset.

WaveGrad: Chen et al. [28] presented a conditional speech synthesis model of waveform samples that estimates the
gradients of the data log-density as opposed to the density itself. It is non-autoregressive as it requires only a constant
number of generation steps during inference. In particular, starting from Gaussian noise, gradient-based sampling is
applied using as few as 6 iterations to achieve accurate audio. The experiments demonstrated that WaveGrad is capable
of generating high-fidelity audio samples, outperforming adversarial non-autoregressive models [15, 116, 222, 223]
in an objective evaluation and matching one of the best autoregressive baseline models [100] in terms of subjective
naturalness.

7.2 Affective Speech Synthesis Systems

Lee et al. [120] introduced an altered version of Tacotron, injecting an emotional embedding e to attention RNN to
generate speech with specifications of emotion and personality of a human. The model was trained and evaluated
on two Korean emotional speech datasets – one from Acriil, the other from ETRI – the former containing speech,
audio, emotional label pairs, while the latter containing a drama script. Through quantitative experiments, the authors
identified two areas of improvement concerning attention alignment. First, due to the scarcity of the frame of a

42Deep Voice 2 has a modified architecture with respect to Deep Voice through separating between the phoneme duration and frequency models and
adding batch normalisation and residual connections in the convolutional layers in the segmentation model. Deep Voice 3 is a novel fully convolutional
attention-based speech synthesis system. It consists of an encoder that maps textual features to an internal representation, a decoder that maps the
encoder representation to an audio representation, and a converter as a post-processing net. It is a fully convolutional system (unlike Tacotron), which
makes computation and training very fast.
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spectrogram, the authors opted to concatenate attention text to the attention RNN’s input to achieve an alignment
of the speech with pronunciation. Second, they applied residual connections to the Convolution Bank + Highway
+ bi-GRU (CBHG) module [119] for a sharper and clearer attention alignment. Overall, the results showed that the
quality of the generated speech was highly correlated with the sharpness of the attention alignment, despite the limited
emotional representation in the speech.

Um et al. [195] developed a text-to-speech system based on the intra-category distance that generates emotional
speech and controls the intensity of emotion representation. In doing so, they first proposed an inter-to-intra distance
ratio algorithm to enable the inclusion of a wider range of emotions simultaneously and enhance their clarity utilizing
the ratio between intra- and inter-cluster embedding vectors. Then an interpolation technique was introduced to control
the intensity of the emotions effectively. During training, the global style token Tacotron (GST-Tacotron) model [212]
was used as a baseline, taking a large number of neutral utterances as input. The effectiveness of the method was
assessed subjectively using Mean Opinion Score (MOS) tests [156] in terms of the quality of the synthesized speech,
while the preference test measured the expressiveness of sadness, anger, and happiness against the mean-based method.
As a result, the proposed approach outperformed the conventional mean-based method in both criteria.

Byun and Lee [22] proposed a multi-conditional emotional speech synthesizer through the Tacotron [211] model by
providing it with an emotional embedding from a multiple-speaker Korean emotional speech database [22]. For the
Tacotron to synthesize multi-conditional speech, the authors injected the embedding vector into the Decoder RNN,
which enables the generation of mel-spectrogram frames. In addition, the Attention module of the Tacotron was trained
using both the emotional speech dataset and a large set of speech data for TTS. The extent to which the model was
emotionally expressive and clear was evaluated by the Mean Opinion Score (MOS) test [156] in a subjective study,
which resulted in the superiority of the proposed method of emotional speech synthesis generating four emotions as
output: happiness, anger, neutrality and sadness.

Li et al. [122] introduced a novel reference-based approach for emotional speech synthesis based on Tacotron to
synthesize speech with neutral and six basic emotions [52]. Specifically, the model integrates four losses such as the
basic Tacotron MSE loss, two emotion classification losses and the style loss [67, 98]. As input, the model takes the
Chinese test first converted into a character sequence, then, CBHG module [119] converts a pre-net output into the
final encoder representation, and finally, the mel-spectrogram is transformed using the CBHG post-net to obtain a
linear spectrogram. The model’s ability to transfer emotion was evaluated through ablation studies, while the emotion
strength control was measured by strength ordering test against the RA-Tacotron [237] in a subjective evaluation. It was
observable from the results that the speech synthesized with the proposed method was more accurate and expressive,
displaying less emotion confusion.

Lei et al. [121] proposed a fine-grained emotion transfer (FET), control, and prediction approach for expressive speech
synthesis that shares architecture with Tacotron [211] and Tacotron2 [175], generating mel-spectrogram through a
CBHG-based text encoder and an attention-based auto-regressive acoustic decoder. As regards emotion expression,
emotional information is learned from the input text in emotion transfer, reference audio in emotion control, and manual
labels in emotion prediction. To control the emotion category, the authors adopted the emotional embeddings, which is
further treated as the global render of speech in the seq2seq model for emotion transfer. The emotion prediction, on
the other hand, learns directly from the phoneme sequences without any reference audio or labels. Finally, the FET
was compared subjectively with the GST model [212] and the utterance-level emotion transfer model (UET) [237],
trained by ground-truth mel-spectrogram, using mel-cepstral distortion (MCD) [110] and A/B preference test [108] as
metrics. For objective evaluation, Dynamic Time Warping (DTW) [137] was adopted to evaluate the predicted features

23



1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

, , Oralbayeva et al.

and target features. The FET model demonstrated better performance compared to the baselines in terms of coarse
emotional expressions and its flexibility in synthesizing the emotional speech with the six basic emotions as happiness,
anger, fear, sadness, disgust and surprise [52].

Liu et al. [126] proposed a novel training strategy for Tacotron-based speech synthesis which does not require
prosody annotation for training. Instead, the model unifies frame and style reconstruction loss. It is then implemented
on speech emotion recognition (SER) and used as a style descriptor for extracting high-level prosody representations.
The proposed strategy is called Tacotron-PL due to the use of perception loss (PL) [98] for style reconstruction loss. In
a comparative study, there were five Tacotron-based text-to-speech systems developed, including baseline Tacotron
and its four variants with the proposed Tacotron-PL among them. Three different evaluation metrics were used for an
objective performance evaluation with regard to spectral modeling, F0 modeling, duration modeling, and deep style
features. Subjective evaluations are conducted through Mean Opinion Score (MOS) [156], A/B preference tests [108],
and Best Worst Scaling (BWS) [65]. By outperforming the other baselines, Tacotron-PL demonstrated the advantages
of the proposed training strategy in terms of expressiveness and feasibility in synthesizing four emotional categories
including sad, happy, angry and neutral.

Wu et al. [220] integrated two descriptors – Capsule Network (CapNet) and Residual Error Network (RENet) – for a
sequence-to-sequence (seq2seq) architecture of an end-to-end emotive speech synthesizer which synthesizes speech
with anger, happiness, sadness and other emotions. CapNet is employed for speech emotion recognition (SER) by
outputting a set of probabilities that correspond to the emotions, while RENet is considered advantageous for deriving
latent emotive representations. Unlike the existing methods, this method utilizes an utterance exemplar for emotion
specification. Specifically, exemplary descriptors are integrated into the seq2seq to control the synthesis. Thus, this
work proposed five E-TTS systems based on categorical descriptors - emotion code vector (EC-TTS), various emotions
(EP-TTS), logit-based descriptor (EL-TTS) from SER, and automatically derived descriptor - EA-TTS and EAli-TTS from
RENet. An experimental study evaluated the emotion similarity and speech quality objectively by calculating the mean
squared error (MSE) [6] and subjectively through mean opinion scores (MOS) test [156] on an audio-book corpus from
the 2011 Blizzard Challenge [104]. Among the two baselines (Tacotron [211] and GST-Tacotron [212]) and five proposed
E-TTS systems (EC-TTS, EP-TTS, EL-TTS, EA-TTS, and EAli-TTS), the E-TTS systems performed significantly better
than the baselines, while EA-TTS achieved the best performance in emotion similarity.

Annotated here are the advanced versions of the speech synthesis systems both for neutral and affective speech,
primarily based on Tacotron [211], the performance and quality of which were proven through objective and subjective
measures (See Table 6 for details) and benchmarking against the state-of-the-art models. Nonetheless, a few shortcom-
ings have been encountered during training. For instance, Lee et al. [120] pointed out the scarcity of the emotional
representations in speech as a significant limitation. It can also be observed from Table 6 that the subjective evaluations
prevail compared to the objective evaluations.

43Dataset sizes are not available
44Not applicable, ibid., p. 5
45This is an approximation based on the details provided in the article, where authors each file lasting from two to three hours for each of the four actors.
46As a quantitative measure, the authors computed MSE values.

24



1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

Data-Driven Communicative Behaviour Generation: A Survey , ,

Table 6. Corpora and evaluation used in the speech synthesis literature

Corpus Evaluation
Source Training Test Objective Subjective

van den Oord et al. [197] CSTR VCTK corpus [221] 32 audio clips (7,860
timesteps)

N/A43 N/A44 Mean Opinion Score
(MOS) [156]

Wang et al. [211] North American English dataset
[211]

24.6 hours of speech 4.1 minutes (1% of the
training data)

N/A MOS [156]

Arik et al. [8] English speech database [8]; Bliz-
zard Challenge dataset [154]

20 hours (13,079 utter-
ances); 20.5 hours (9,741
utterances)

N/A N/A MOS [156]

Taigman et al. [185]

CSTR VCTK corpus [203]
LJ database [97]
The Nancy corpus [104]
English audiobook [154]

N/A N/A Mel-cepstral distortion
(MCD) [110]

MOS [156]

Lee et al. [120] Korean speech dataset from Acriil 21 hours N/A N/A MOS [156]
Um et al. [195] Korean male voice database 3.79 hours (2,965 utter-

ances)
N/A N/A MOS [156]

Byun and Lee [22] Korean Single Speaker Speech
Dataset (KSS Dataset) [1]

8-10 hours 45 (18,324 au-
dio files)

100 audio files (3-10 sec-
onds each)

N/A MOS [156]

Li et al. [122] Emotional Speech Corpus [237] 14 hours 70 sentences (10 per
emotion)

N/A Strength ordering test

Lei et al. [121] Emotional Speech Corpus [237] 14 hours 210 sentences (30 per
emotion)

Dynamic Time Warp-
ing (DTW) [137],
Mel-cepstral distortion
(MCD) [110]

A/B preference test

Liu et al. [126] IEMOCAP database [20]
LJ database [97]

10039 utterances
24 hours N/A MCD [110], Root Mean

Squared Error (RMSE),
Frame Disturbance (FD),
Dynamic TimeWarping
(DTW) [137]

MOS [156], A/B pref-
erence test [108], Best
Worst Scaling (BWS)
[65]

Wu et al. [220] IEMOCAP database [20], The Eng-
lish audiobook [104]

8 speaker sessions
4.79 hours

1 speaker session
0.35 hours Mean squared error

(MSE)46
MOS [156]

Chen et al. [28] Proprietary speech dataset [28], LJ
database [97]

385 hours, 23 hours 1,000 sentences Log-mel spectrogram
mean squared error
metrics (LS-MSE), MCD
[110], F0 Frame Error
(FFE) [33]

Listening test (5-point
MOS scale) [156]

Summary: Speech Synthesis

• Speech production, known as text-to-speech synthesis, has benefited considerably from data-driven
approaches, and is the most mature data-driven social behaviour available, with some artificial speech
being almost indistinguishable from human speech.

• Commercial vendors have invested considerably in data-driven models, which far outperform academic
products especially for neutral speech. Still, there is considerable spread in quality between languages.

• Most speech synthesis engines are unable to adaptively overlay affect and emotion, with most voices
sounding neutral. This, currently, is a limitation for the field of Human-Robot Interaction (HRI), which
calls for rich affective speech.

• Last but not least, it is noteworthy to mention that the high fidelity of artificial speech might not
always suit the needs of HRI: studies [22, 185] suggest that a human-like voice might not fit the robotic
appearance and that a more robotic voice might be more appropriate to the context of interaction.

8 OUTLOOK

It is clear that data-driven methods relying on connectionist architectures are an important and perhaps definitive
answer to the question of how to generate human-like communicative behaviour. Never before have models produced
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such rich and varied behaviour without the need for explicit programming. However, there are a number of challenges
that still face the relatively young field of data-driven behaviour generation.

Multimodal behaviour generation. Most models take a single signal and map it onto a modality: text to speech, emotion
to facial expression, speech to gesture. However, in human-to-human communication all modalities are intertwined:
emotion colours speech and gestures, gestures have an impact on speech, context influences eye gaze, etcetera. The
fact that communication is a highly interdependent process is glossed over in current data-driven generation methods,
for obvious reasons. Still, in future systems we would expect more modalities to be taken into consideration. In the
speech generation community, for example, emotion has long been the subject of study, and research systems are
able to generate speech modulated by emotion. However, the flipside to this is that for a data-driven approach more
data will be needed. Already the amount of data required to train systems is expensive to collect for two connected
modalities, adding other modalities is likely to increase the size of the required training data exponentially. How this
will be overcome is as yet unclear.

Dyadic and multiparty communication. The large majority of data-driven models do not take the receiver into account.
Instead they are trained to produce communicative behaviour as if it would concern a monologue in which the receiver
of the message does not respond. In human-to-human communication, most interactions are multiparty interactions and
our communicative behaviour is finely tuned to the reactions and responses of others. We watch for signals showing
understand or misunderstanding, monitor for affective responses and are sensitive to bids for turn-taking. All these
elements are largely missing from current data-driven methods, as they are exclusively trained on data that does not
take into account the interactive nature of communication. Again, it seems likely that more data could resolve this
problem, but at the same time collecting this data comes at a great cost and might be beyond the means of most R&D
labs.

Measuring quality of generated behaviour. Assessing the quality of generated behaviour relies on objective and
subjective measures. Objective measures are the workhorse of data-driven methods, as they form the cost function
against which the models are optimised. Unfortunately, these objective measures only weakly correlate with subjective
measures (see for example [114]). Subjective measures, during which people (or simulated subjective raters) judge the
quality of the generated behaviour, remain the gold standard in evaluation. However, using human raters is expensive
and time consuming and as such subjective measures cannot be used during training when many millions of evaluations
are needed to drive the model ever closer to generating behaviour that is human-like. Recent work on gesture generation
showed how subjective measures still are better for measuring the quality of models, and that objective measures often
fall short as they only optimise a quantitative metric which is often a poor representation of qualitative assessment
[217, 219]. Simulated subjective raters might be a way forward, as in GAN models in which one part of the model
is trained to discriminate between artificial and human-like output, pushing the generated behaviour ever closer to
being indistinguishable from human behaviour. Another challenge is the lack of common standards to evaluate models.
Sometimes this is informed by the need to evaluate very specific elements of the generated behaviour, or because the
accepted standard has outlived its usefulness. Benchmarks often form the focus of intense research investment and are
often reached in just a few years, at which point they become useless as a target to aim for. Challenges, where different
models are pitted against each other, have proven useful in this context – co-speech gestures for example have benefited
from a series of challenges pushing the field, but also pushing the way in which models are evaluated [114, 229].
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Common datasets and evaluation methods. From the survey it appears that there are few common datasets on which
models are trained and evaluated. Researchers and engineers prefer taking a pragmatic approach when chosing data to
train and evaluate against. Factors such as availability, easy-of-use, feature availability, cost and appropriateness for
the task at hand are deemed important and are often used as a reason to not use datasets which have been used by
others. One corollary is that the field would benefit from agreed datasets and evaluation standards, something which
happens for some modalities (such as speech synthesis) and is slowly being adopted for other modalities (such as
gesture generation [114]).

Semantics of multimodal communication. Communication serves to change the mind of others. As such, any com-
municative act carries semantics. However, this is usually glossed over in data-driven models. In some cases, this
is not too much of a problem. Speech generation, for example, generates speech from text. Text has a well-agreed
notation and speech generation maps this orthography to sound. However, speech generation is largely context-free
and the production of human-like speech is possible without requiring much access to the semantics of the text and
without access to the internal affective state of the agent. For exceptions to this the context of the neighbouring text
is sufficient to disambiguate the required speech sounds. For example, disambiguating “bass” as a fish (/bas/) or a
musical instrument (/beIs/) can often be done by relying on other words nearby. Other modalities are different in that
what they convey is tightly linked with affect, emotion and semantics of the message. Current data-driven methods do
not have access to these, and while the models can with sufficient data pick up semantic correlations, the training cost
at which this comes is prohibitive.

Fine tuning models. One promising benefit of data-driven neural models is the potential for fine-tuning (also known
as transfer learning) of a pre-trained model. In this, a model is first trained using a large amount of data and then later
training continues often on a smaller dataset so that the pre-trained model is more relevant for a specific task. While
few behaviour generation models have been made available for fine-tuning, the practice is already well established in
other fields, such as Large Language Models, where models can be relatively easily fine-tuned for other language-based
generative tasks (e.g., [233]).

Hardware does not match the dynamics of software generated behaviour. Most social robots rely on actuation technology,
such as electric motors and planetary gears, which do not offer the velocity, acceleration and jerk typically seen in
the human body. This leads to multimodal social behaviour that appears unnaturally slow. Some solutions exist: some
robots, such as Keepon, rely on simpler, smaller and lighter bodies which allow low-cost actuators to generate high-
velocity dynamics. Others, such as EngineeredArts’ Ameca or RoboThespian animatronic robots, rely on alternative
actuation technology, often using pneumatics, to produce high-velocity animations matching human dynamics. However,
human-like dynamics are for the moment still out of scope for most commercial and research social robots.

Despite these challenges, data-driven methods for the time being look to be the way forward. But to achieve near-
human multimodal behaviour, a number of important obstacles will need to be overcome. One striking observation
is that a developing child does not have access to thousands or perhaps millions of hours of training opportunities.
Instead, children learn to interact multimodally through a combination of observation and online learning, and innate
biases and constraints. This combination allows them to become skilled multimodal communicators in just a short few
years. Perhaps future data-driven models should, instead of taking a tabula rasa approach, also start with biases and
constraints to make the training process more efficient.
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9 CONCLUSION

In this survey paper, we review different data-driven approaches, in the related literature, for behaviour generation
covering speech, gestures, facial expressions, and body behaviour. The paper discusses the findings of different deep
learning-based systems for behaviour generation and reflects on a road map for future research in this area at the
intersection of both the Human-Robot Interaction (HRI) and Human-Agent Interaction (HAI) communities. We conclude
that there are still challenges facing the efforts towards generating credible human-like multimodal behaviours, like the
size of the available data sets for training the systems, generating affective behaviours, and evaluating measures of the
generated behaviours.

The objective of this survey was to show the current state-of-the-art of behaviour generation approaches, and
highlights successes in behaviour generation (e.g., speech synthesis that has come on in leap and bounds, based on
the availability of transcribed data and sophisticated artificial neural models) but also areas in which improvement
can be made (to stay with speech synthesis, one important limitation is that it still only generates neutral sounding
speech). While we tried to be comprehensive, we have not covered all possible modalities. Eye gaze, for example, while
important in face-to-face interaction between people and robots [2] is not covered as a separate modality in this review,
as eye gaze behaviour has received little attention in data-driven behaviour generation. Still, given the ongoing success
of data-driven generative methods, no modality will be untouched by it.

10 APPENDICES

A SEARCH KEYWORDS

Table 7. Examples of keywords used in the search query across databases.

Web of Science
TS47=face AND TS=generation AND TS=data-driven AND PY=(2014-2020)
TS=facial AND TS=generation AND TS=data-driven AND PY 48=(2014-2020)
TS=hand gesture AND TS=generation AND TS=data-driven AND PY=(2014-2020)

Scopus
TITLE-ABS-KEY49 (facial AND behaviour AND generation) AND TITLE-ABS-KEY (data-driven) AND PUBYEAR50 >201451
TITLE-ABS-KEY (face AND behaviour AND generation) AND TITLE-ABS-KEY (data-driven) AND PUBYEAR >2014
TITLE-ABS-KEY (face AND gesture AND generation) AND TITLE-ABS-KEY (data-driven) AND PUBYEAR >2014
TITLE-ABS-KEY (facial AND expression AND data-driven AND generation) AND PUBYEAR >2014
TITLE-ABS-KEY (lip AND motion AND generation ) AND PUBYEAR >2014
TITLE-ABS-KEY (data AND lip AND motion AND generation) AND PUBYEAR >2014
TITLE-ABS-KEY (hand AND gesture AND generation) AND TITLE-ABS-KEY (data-driven) AND PUBYEAR >2014
TITLE-ABS-KEY (hand AND gesture AND generation) AND PUBYEAR >2014 AND (LIMIT-TO (PUBYEAR , 2020) OR LIMIT-TO (PUBYEAR , 2019) OR
LIMIT-TO (PUBYEAR , 2018) OR LIMIT-TO (PUBYEAR , 2017) OR LIMIT-TO (PUBYEAR , 2016) OR LIMIT-TO (PUBYEAR , 2015))
TITLE-ABS-KEY (body AND action AND generation AND human AND data) AND PUBYEAR >2014 AND (LIMIT-TO (DOCTYPE , "ar") OR LIMIT-TO
(DOCTYPE , "cp")) AND (LIMIT-TO (SUBJAREA , "COMP") OR LIMIT-TO (SUBJAREA , "ENGI")) LIMIT-TO (DOCTYPE , "ar") OR LIMIT-TO (DOCTYPE,
"cp")) AND (LIMIT-TO (SUBJAREA, "COMP") OR LIMIT-TO (SUBJAREA, "ENGI"))
TITLE-ABS-KEY (multi-modal AND gesture AND generation) AND PUBYEAR >2014
TITLE-ABS-KEY (multi-modal AND gesture AND generation) AND PUBYEAR >2014 AND (LIMIT-TO (DOCTYPE52 , "cp"53) OR LIMIT-TO (OCTYPE ,
"ar"54))
TITLE-ABS-KEY (head AND gesture AND generation) AND PUBYEAR >2014
ACM
AllField55 :(face) ANDAllField:(data-driven) ANDAllField:(generation) ANDAllField:(visual prosody) AND [PublicationDate: (01/01/2014 TO 12/31/2020)]
[All: data-driven hand gesture generation] AND [Publication Date: (01/01/2014 TO 12/31/2020)]
IEEE
((“All Metadata":facial) AND “All Metadata":generation) AND “All Metadata":data-driven) Year range: 2014-2020
((“All Metadata":face) AND “All Metadata":generation) AND “All Metadata":data-driven) Filter for year range = 2014-2020 Filter: journals
((“All Metadata":fac*) AND “All Metadata":generation) AND “All Metadata":data-driven) Year range=2014-2020
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