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Revealing epilepsy type using a 
computational analysis of interictal 
EEG
Marinho A. Lopes   1,2,3, Suejen Perani4, Siti N. Yaakub   4, Mark P. Richardson3,4,5, 
Marc Goodfellow   1,2,3 & John R. Terry1,2,3

Seizure onset in epilepsy can usually be classified as focal or generalized, based on a combination of 
clinical phenomenology of the seizures, EEG recordings and MRI. This classification may be challenging 
when seizures and interictal epileptiform discharges are infrequent or discordant, and MRI does not 
reveal any apparent abnormalities. To address this challenge, we introduce the concept of Ictogenic 
Spread (IS) as a prediction of how pathological electrical activity associated with seizures will propagate 
throughout a brain network. This measure is defined using a person-specific computer representation 
of the functional network of the brain, constructed from interictal EEG, combined with a computer 
model of the transition from background to seizure-like activity within nodes of a distributed network. 
Applying this method to a dataset comprising scalp EEG from 38 people with epilepsy (17 with genetic 
generalized epilepsy (GGE), 21 with mesial temporal lobe epilepsy (mTLE)), we find that people with 
GGE display a higher IS in comparison to those with mTLE. We propose IS as a candidate computational 
biomarker to classify focal and generalized epilepsy using interictal EEG.

Epilepsy is a neurological disorder characterized by recurrent seizures1. According to the International League 
Against Epilepsy (ILAE), the diagnosis of epilepsy comprises three levels2: the identification of seizure type3, 
the classification of epilepsy type2, and diagnosis of epilepsy syndrome, if possible. Four seizure-onset patterns 
are currently recognized: focal, generalized, combined generalized and focal, and unknown2. The diagnosis of 
generalized and focal epilepsy is based on clinical grounds, supported by EEG findings. When there is insuffi-
cient information to determine the epilepsy type, the clinician may use the term unknown epilepsy until a more 
accurate classification may become possible2. Classification as generalized or focal epilepsy is important as it has 
a strong relationship with the potential underlying aetiology and determines the first line of treatment as well as 
longer-term management options such as surgery. Prognosis depends on the type of epilepsy since generalized 
epilepsies usually respond better to medication4.

Diagnosis of seizure type is primarily based on clinical history of the seizure phenomena. Seizure semiol-
ogy plays a crucial role in the seizure classification system3,5 but may only be considered if clinical seizures are 
observed. Furthermore, semiology interpretation may vary between neurologists6. On the other hand, patholog-
ical interictal spikes, spike-waves, and sharp waves (collectively referred to as interictal epileptiform discharges 
(IEDs)) can be used to support diagnosis, however their sensitivity can be as low as 29% from a first EEG7. When 
detected, IEDs may contribute to diagnosing the seizure type and epilepsy type, with generalized IEDs suggesting 
a generalized epilepsy, and focal IEDs suggesting a focal epilepsy7. IEDs may be absent because they are infre-
quent or because they originate in deep sources, and therefore might not be visible on the scalp7. Recording a 
seizure onset during EEG often provides robust evidence of focal or generalized epilepsy but is unlikely during a 
routine 60–90 minute diagnostic clinical EEG.

Since seizures and IEDs are typically rare events, clinical EEG consists largely of apparently normal brain 
activity (e.g. interictal EEG). In recent years, a growing body of literature has supported the hypothesis that 
apparently normal EEG may also be informative about possible underlying epilepsy. For example, Larsson et al.8 
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showed that the EEG power spectrum from people with epilepsy has a shift in the peak of alpha power towards 
lower frequencies compared to a group of people without epilepsy. Horstmann et al.9 found a tendency for func-
tional networks inferred from people with epilepsy to exhibit greater clustering and therefore more regularity 
than controls. Similarly, Quraan et al.10 observed that functional networks from people with epilepsy deviated 
from small-world network structures found in healthy controls. Van Diessen et al.11 also used resting-state EEG to 
build a multivariable decision tree based on functional network properties that was capable of distinguishing chil-
dren with focal epilepsy from healthy children. In our prior work12, we revealed a brain network endophenotype 
in patients with idiopathic generalized epilepsy (IGE) and their relatives compared to healthy controls. In this 
study, brain networks were also constructed from resting-state scalp EEG, and an elevated average number of con-
nections in networks from individuals with IGE and their relatives were found, compared to healthy controls12. 
Furthermore, it has also been shown that directed functional networks inferred from interictal high-density scalp 
EEG may be informative of cognitive deficits in TLE13 and may be used to diagnose TLE even in the absence of 
interictal spikes14. Also, van Diessen et al.15 used interictal EEG from drug-naïve children with newly diagnosed 
focal and generalized epilepsy and controls to show that network alterations could be identified at an early stage of 
focal epilepsy. More recently, Verhoeven et al.16 implemented an automated diagnosis tool to lateralize TLE based 
on apparently normal EEG. Moving from these observational studies, we developed a framework to study the 
mechanisms by which network alterations lead to pathological activity17. Here we showed that a computational 
biomarker based on clinical resting-state EEG could support diagnosis of generalized epilepsies17,18.

We have recently studied the propensity of different synthetic network topologies to generate seizure-like 
activity19. We quantified this propensity in terms of Brain Network Ictogenicity (BNI), i.e. the average time that 
each network node spends in the seizure state12,19,20, and found that BNI depends on the network structure (Fig. 
4 in ref.19). We observed that some network topologies were more prone to widespread seizure emergence across 
the network compared to others and this was characterized by specific BNI features. In the current study, we 
therefore aim to test whether properties of the BNI are capable of distinguishing between focal and generalized 
epilepsy, based on a dynamic network model informed by functional networks inferred from scalp EEG.

Results
Quantification of Ictogenic spread (IS).  We studied a total of 38 adult individuals with epilepsy: 17 with 
GGE (9 female, mean age 25.8 years) and 21 with mTLE (10 female, mean age 40.5 years). Participants were asked 
to rest with their eyes closed while scalp EEG was recorded with a 64-channel MR-compatible cap at a sampling 
rate of 5 kHz (see Methods). The data was pre-processed and continuous 20 second artifact-free segments were 
extracted from the recordings. We found 21 ± 14 segments per individual in the GGE dataset and 12 ± 8 segments 
in the mTLE dataset. A total number of 623 segments were considered. We focused our analysis in two different 
frequency bands, low-alpha (6–9 Hz) and broadband (1–25 Hz). For each frequency band, we extracted a total 
number of 623 functional networks using the Phase Locking Factor (PLF)21–23 each derived from a 20 second EEG 
segment (see Methods). Each functional network was then studied using a phenomenological model of seizure 
transitions to characterize its propensity to generate generalized or focal epileptiform dynamics. To quantify this 
propensity, we measured BNI as a function of the global scaling K of the coupling coefficients computed from the 
functional connectivity (see Methods).

Figure 1 summarizes our analysis: we inferred a functional network from each 20 second artifact-free seg-
ment, then used a mathematical model to study the propensity of the network to generate focal or generalized 
dynamics by calculating the IS. Thus, for each individual we obtained a distribution of IS values. Figure 2 shows 
two representative BNI curves, one from an individual with GGE and another from an individual with mTLE. We 
observe that the GGE curve is steeper than the mTLE curve.

IS comparison using all data.  Our hypothesis is that the curves computed from the functional net-
works of the GGE group should have a steeper slope compared to the curves of the mTLE group, i.e., a larger IS. 
Figure 3(a,b) show the IS of each individual using the functional networks inferred in the 1–25 Hz frequency 
band. Note that since we have multiple functional networks per individual, each marker corresponds to the 
average IS across all functional networks of a single individual, and the error bars correspond to the standard 
deviation of the IS. We find that the GGE group has higher values of IS relative to the mTLE group (p < 0.001, 
Mann–Whitney U test with Bonferroni-Holm correction for two comparisons in the two frequency bands). The 
AUC of the ROC curve in Fig. 3(c) is 0.85. We found similar results in the 6–9 Hz frequency band (p = 0.002, 
same statistical test as above), with a slightly lower AUC = 0.78. Figure 3(a) further indicates that right mTLE 
individuals have higher IS compared to left mTLE (p = 0.02, same statistical test as above). We observe the same 
relationship in the low-alpha frequency band (p = 0.02, same statistical test as above).

IS comparison using an equal number of segments per individual.  Given that different individuals 
had a different number of 20 second artifact-free segments, we repeated the same comparison in the broadband 
using 3 segments for each and every individual (i.e. the smallest number of segments in any individual). The 3 
segments were randomly selected for individuals who had more segments. We also found higher IS in the GGE 
group compared to the mTLE group (p < 0.001, same statistical test as above, and AUC = 0.83).

IS comparison in age and gender matched individuals.  We further compared the IS in a subset of 14 
GGE and 14 mTLE individuals age and gender matched and found similar results (see Supplementary Fig. S1). 
Finally, we assessed whether epilepsy duration could be the reason why mTLE individuals display lower IS com-
pared to GGE individuals given that the two groups have on average different epilepsy durations. Supplementary 
Figure S2 shows that IS does not correlate with epilepsy duration within the mTLE and GGE groups and thus 
could not account for the difference between groups. Additionally, whilst all mTLE individuals had ongoing 
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seizures, some of the GGE individuals were seizure-free. We therefore sought to understand whether this differ-
ence could account for the difference in IS between the two groups (see Supplementary Fig. S2(b)). We performed 
a Mann–Whitney U test to compare IS from seizure-free and non-seizure free individuals with GGE and found 
no statistical difference between the two groups.

IS comparison using a single segment per individual.  We also estimated the chance of finding these 
results from a single 20 second segment per individual in the 1–25 Hz frequency band to examine whether a 

Figure 1.  Scheme of the data analysis procedure. (a) Electrodes were placed on the scalp of 17 individuals 
suffering from genetic generalized epilepsy and 21 individuals with mesial temporal lobe epilepsy. (b) EEG 
signals were recorded and several 20 second artifact-free segments were selected per individual. This panel 
displays 10 EEG channels for representative purposes though in our analysis we considered 64 EEG channels. 
(c) Functional networks were constructed from the EEG signals. (d) Model-generated data was obtained by 
placing a mathematical model on each node of the functional networks. (e) The Brain Network Ictogenicity 
(BNI) as a function of the global scaling factor K was measured from the model-generated data. The ictogenic 
spread is defined as the average slope of this curve between BNI = 0.1 and BNI = 0.9 (the dashed red line).

Figure 2.  Two representative Brain Network Ictogenicity (BNI) curves as a function of the global scaling 
factor K computed from two functional networks. The blue curve corresponds to an individual with genetic 
generalized epilepsy, and the red curve to an individual with mesial temporal lobe epilepsy. The standard error 
of the BNI is not represented as it is almost indistinguishable given the scale of the figure.
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single segment is enough to observe an equivalent group classification as using all the data. We repeated the 
statistical analysis 1000 times using only one randomly selected segment per individual. We found a 99% chance 
of observing a statistically significant higher IS in the GGE group compared to the TLE group, but just an 11 % 
chance of finding an equal or higher AUC compared to the case with all the segments. The average AUC was 0.78.

IS comparison restricted to 19-channel data.  Finally, since clinical EEG is most often recorded using 
a 19-channel system, we repeated our analysis using data only recorded from the standard 19 channels: Fp1, Fp2, 
F7, F3, Fz, F4, F8, T7, C3, Cz, C4, T8, P7, P3, Pz, P4, P8, O1, and O2. Thus, instead of the previous networks with 
64 nodes, we considered networks comprising only 19 nodes. Note that as we used a bivariate method to con-
struct the functional networks, we did not have to compute the functional networks again, instead we kept the 
nodes of interest and respective pairwise functional connections. We restricted our evaluation to the above best 
performing frequency band, 1–25 Hz. Again, we found higher IS in the GGE group compared to the mTLE group 
(p = 0.005, same statistical test as above, and AUC = 0.75; see Supplementary Fig. S3). We also tested the robust-
ness of this finding when using only one 20 second segment per individual and found a 76% chance of observing 
a statistically significant result and a 22% chance of finding an equal or higher AUC (the average AUC was 0.70). 
This 22% chance is higher than the one observed using the 64-channel data (11%) because the AUC based on the 
19-channel confined data is lower than the one found using the 64-channel data.

Discussion
In this study, we explored whether generalized and focal epilepsies can be differentiated using interictal EEG. 
This is an important question because, in the clinical setting, EEG in people with suspected epilepsy is typically 
free of discharges and other epileptiform abnormalities. Therefore, the discovery of biomarkers in interictal EEG 
would improve the clinical utility of EEG. We considered a dataset of scalp EEG collected from 38 individuals 
with epilepsy, 17 with GGE, and 21 with mTLE. We inferred functional networks from interictal EEG using the 
PLF. In order to distinguish the functional networks between the two groups, we introduced the Ictogenic Spread 
(IS), which, as articulated in the Results, quantifies the propensity of a network to generate focal or generalized 
seizures in silico. To account for the fact that functional networks are time-dependent and therefore model pre-
dictions may vary depending on the considered network, we used multiple functional networks per individual. 
The GGE group exhibited a higher IS than the mTLE group (see Fig. 3). These findings are in line with our pre-
vious theoretical results, in which we showed that networks with focal ictogenic nodes displayed a more gradual 
increase of BNI as a function of global coupling (i.e. lower IS) compared to other networks without such focal 
ictogenic drivers19. We further showed that the result was significant using only one 20 second segment of EEG 
data per individual or even standard 19-channel EEG instead of 64-channel EEG data, although with lower clas-
sification success (see Supplementary Fig. S3).

There are a number of possible confounding factors that could account for the observed results. First, the 
mTLE group is on average older than the GGE group. To address this, we compared a subset of 28 individuals age 
(and gender) matched and found equivalent results (see Supplementary Fig. S1). Second, the mTLE group has on 
average a longer epilepsy duration than the GGE group. However, we do not observe a correlation between IS and 
epilepsy duration within the mTLE and GGE groups separately (see Supplementary Fig. S2). Third, some of the 
GGE individuals obtained seizure control under medication, whilst all mTLE individuals were not seizure-free. 

Figure 3.  Ictogenic Spread (IS) of the genetic generalized epilepsy (GGE) and mesial temporal lobe epilepsy 
(mTLE) individuals. Each marker in panels (a and b) represents the mean IS of a single individual and the error 
bars account for the variability of IS measured across different functional networks of different EEG segments 
band-pass filtered between 1 and 25 Hz. Panel (a) and (b) show the IS of mTLE and GGE subjects, respectively. 
In panel (a), the red markers identify left mTLE individuals, whist the orange markers correspond to right 
mTLE individuals. The GGE group has a larger IS than the mTLE group (p < 0.001, Mann–Whitney U test 
with Bonferroni-Holm correction for multiple comparisons in the two frequency bands). Panel (c) exhibits the 
receiver operating characteristic (ROC) curve for genetic generalized epilepsy versus mTLE subjects using the 
IS as a classifier. The area under the curve (AUC) is 0.85, and the optimal specificity and sensitivity are 0.86 and 
0.65, respectively.
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We thus compared the IS between non-seizure-free and seizure-free individuals within the GGE group and found 
no statistical difference (see Supplementary Fig. S2(b)). We therefore suggest that these factors do not influence 
the IS. Nevertheless, we acknowledge that the framework may be improved in a number of ways. In particular, 
there are multiple possible methods to infer functional networks from scalp EEG24. For example, it has been 
shown that an orthogonalization of source reconstructed signals may offer superior predictions of functional 
connectivity25,26. Different methods may extract different information from the EEG data and therefore model 
predictions may vary upon the choice of functional network measure. Thus, future studies should compare the IS 
using other methods to construct functional networks. Also, here we chose to examine only two frequency bands 
(see Methods), however, other frequency bands may be more informative. Finally, the employed model may be 
over-simplistic for the purpose of epilepsy classification. A more sophisticated model could enable fitting other 
data properties which in turn could lead to better predictions. Such analysis may lead to an optimized framework 
with superior classification performance. However, a comprehensive comparison of all these methodological 
choices will demand a much larger dataset than the one used in this study.

It has been demonstrated that transcranial magnetic stimulation (TMS) is capable of unveiling differences 
between generalized and focal epilepsy27. In particular, it was shown that individuals with idiopathic generalized 
epilepsy (IGE) required a stronger TMS to recruit intracortical inhibition compared to those with focal epilepsy27. 
We suggest that such difference may be a consequence of different underlying network mechanisms. Based on our 
results, we further suggest that these mechanisms are expressed in functional networks inferred from interictal 
EEG.

Interestingly, within the mTLE group we found that individuals with right mTLE exhibited higher IS than 
individuals with left mTLE. This result is in agreement with previous diffusion tensor imaging studies that have 
shown that left and right TLE are not symmetric pathologies28,29. Left TLE was associated with a much more 
pronounced reduction of fractional anisotropy in the ipsilateral temporal lobe compared to controls29. This more 
marked structural alteration in left TLE may explain why we find left mTLE with lower IS relative to right mTLE.

In this study, we considered individuals on antiepileptic drugs. We aim in future work to study newly diag-
nosed and untreated individuals. This will allow us to control for the potential effect of a prolonged pathology 
and the effect of medication on brain networks. Furthermore, future studies should also explore whether our 
framework based on the concept of the IS may also be useful in distinguishing structural networks inferred from 
individuals with generalized and focal epilepsy. Also, taking into account that the IS was capable of distinguishing 
left and right mTLE, future work should aim to further develop the computational framework to test whether it 
is capable of localizing focal epilepsies. This framework may then be compared to other recent approaches which 
have shown promise at the group level in identifying hemispheric abnormalities in cohorts of left and right focal 
epilepsies based on interictal scalp EEG30.

The methods proposed here are one instance of a more general framework that has been developed in recent 
years to study brain networks based on simulations of brain activity31–34. EEG or other data modalities allow 
us to infer a network representation of the brain, whose properties can then be examined by using a model of 
brain dynamics. In the context of epilepsy, this framework has been used to study epilepsy diagnosis17,18, epilepsy 
surgery34–36, seizure propagation37, and epileptogenesis in idiopathic generalized epilepsy38 using different data 
modalities. Here, we further extended the framework to differentiate between focal and generalized epilepsy. 
Contrarily to previous studies focused on network differences9–12,15, the framework employed in this study has 
the potential of uncovering mechanistic insights of the underlying pathologies. It is important to note that we are 
not simply distinguishing mTLE from GGE individuals. Instead, we predicted that GGE should present higher 
IS values than mTLE due to the fact that the underlying brain dynamics in silico that are supported by GGE func-
tional networks are expected to be more generalized than the dynamics supported by mTLE functional networks. 
Our results thus suggest that even apparently normal scalp EEG hold information about the pathophysiological 
features of epilepsy type.

In concluding: at present the classification of epilepsy type is mainly based on the clinical observation of sei-
zures and IEDs2. In this study, we showed that interictal EEG can be informative and support the classification of 
epilepsy type as either focal or generalized. Such methods that rely only on interictal EEG may offer additional 
clinical value, removing the reliance on observing seizures or IEDs as well as reducing the need for prolonged 
monitoring.

Methods
Recruitment and selection of participants.  GGE individuals were recruited from seizure clinics across 
London, and mTLE individuals were recruited from outpatient epilepsy and neurology clinics in south London. 
The diagnosis of mTLE or GGE was made by an epilepsy specialist on the basis of clinical evaluation including 
seizure history, scalp EEG recordings, and conventional clinical MRI reported by experienced neuroradiologists. 
All patients were on anti-epileptic drugs (AEDs) at the time of the study. We excluded patients with history of any 
neurological condition other than epilepsy. Five GGE individuals were seizure-free from about 6 months after 
diagnosis, whereas all other individuals were not. A full list of the demographic characteristics of the patients 
is available in Tables 1 and 2. In accordance with approved guidelines, the study was conducted at the National 
Institute for Health Research/Wellcome Trust King’s Clinical Research Facility at King’s College Hospital and 
approved by the Riverside Research Ethics Committee (REC approval number 12/LO/2006), and the Bromley 
REC (14/LO/0193). Written informed consent was obtained from all participants after all procedures were fully 
explained.

EEG acquisition.  Scalp EEG was recorded with a 64-channel MR-compatible cap (BrainAmp MR plus, Brain 
Products, Gilching, Germany). We used the cap’s standard montage: reference channel between Fz and Cz chan-
nels, and the ground channel between Fz and Fpz. EEG data were band-pass filtered at 0.016 Hz–1 kHz, with 
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16-bit digitalization (0.05 mV resolution) at a sampling rate of 5 kHz. EEG was recorded during echo-planar 
imaging (EPI) in a General Electric 3.0 Tesla MRI scanner (GE Discovery MR750, General Electric Healthcare 
Systems, Chicago, USA). During the acquisition, participants were asked to rest with their eyes closed for 2 fMRI 
sessions of 10 minutes each. These in-scanner data contained considerably more suitable epochs for analysis than 
a typical 10–20 clinical EEG, hence these data were preferred for this study.

ID Age Gender Syndrome
Seizure 
freedom

Epilepsy 
duration Medication

# of 20 sec 
segments

GGE01 22 M JME No 1 VPA 57

GGE02 14 F JME No 1 LMT 37

GGE03 20 F JME Yes* 1 LEV 16

GGE04 36 M JME No 20 VPA 31

GGE05 18 F GTCSO No 1 unknown 20

GGE06 37 F JME Yes* 1 LMT 12

GGE07 26 F GTCSO Yes* 1 LMT 24

GGE08 18 F JME Yes* 1 LMT 15

GGE09 22 F GTCSO No 4 LMT 37

GGE10 39 M GTCSO No 11 LEV 12

GGE11 40 M JME No 32 VPA 5

GGE12 21 M JME No 14 VPA 14

GGE13 20 M JME No 4 VPA, LEV 26

GGE14 22 F JME No 7 LMT, LEV 33

GGE15 30 F JME No 23 VPA, LEV, PER 9

GGE16 40 M JME No 25 VPA 13

GGE17 14 M JME Yes* 1 VPA 3

Table 1.  Clinical characteristics of the individuals with genetic generalized epilepsy. Age and epilepsy duration 
is in years, M = male, F = female, JME = juvenile myoclonic epilepsy, GTCSO = generalized tonic clonic seizure 
only, VPA = valproate, LEV = levetiracetam, LMT = lamotrigine, PER = perampanel. *Seizure-free individuals 
had not experienced seizures from about 6 months after diagnosis.

ID Age Gender Syndrome
Seizure 
freedom

Epilepsy 
duration Medication

# of 20 sec 
segments

TLE01 41 F Right mTLE No 17 LMT, LEV, PER, CLB 4

TLE02 43 F Left mTLE No 23 CAR, LMT 3

TLE03 57 F Left mTLE No 52 LEV, CIT 15

TLE04 22 M Left mTLE No 6 CAR 14

TLE05 34 M Right mTLE No 23 PHB, VPA, OLA, CIT 3

TLE05 52 F Left mTLE No 37 LAC, CIT, LOR 6

TLE06 51 F Left mTLE No 20 LAC 4

TLE08 31 M Right mTLE No 6 CAR, LEV, CLB 8

TLE09 48 M Right mTLE No 15 LEV, TOP 12

TLE10 31 M Right mTLE No 10 LEV, ZON, CLN 23

TLE11 58 F Left mTLE No 11 TOP, CLB 10

TLE12 24 M Right mTLE No 2 CAR 25

TLE13 25 M Left mTLE No 2 VPA, TOP 5

TLE14 43 F Left mTLE No 3 CAR 16

TLE15 23 M Right mTLE No 1 ZON 23

TLE16 47 M Left mTLE No 32 CAR 23

TLE17 57 M Right mTLE No 32 LMT 5

TLE18 37 F Left mTLE No 10 CAR 14

TLE19 31 F Left mTLE No 9 LEV 17

TLE20 44 F Left mTLE No 43 CAR, CLB 22

TLE21 52 M Right mTLE No 27 LMT, PER 7

Table 2.  Clinical characteristics of the individuals with mTLE. Age is in years, M = male, F = female, 
LEV = levetiracetam, LMT = lamotrigine, PER = perampanel, CLB = clobazam, CAR = carbamezapine, 
PHB = phenobarbitone, VPA=valproate, OLA=olanzapine, CIT=citalopram, ZON=zonisamide, 
LAC=lacosamide, LOR=lorazepam, CLN=clonazepam, TOP=topiramate.
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EEG pre-processing.  MR gradient and pulse-related artefacts were removed off-line from the EEG recorded 
inside the MRI using the template artefact subtraction method39,40 implemented in BrainVision Analyser (version 
2.0, Brain Products, Germany). The EEG recordings were then reviewed by SP, and artefact-free channels were 
identified. Since interpreting EEG is a subjective task41, we further identified artefact-free data using TAPEEG, a 
fully automated toolbox for resting-state EEG detection42, and considered only the data classified as artefact-free 
independently by both SP and TAPEEG. We then extracted continuous 20 second artifact-free segments from the 
recordings. The data were re-referenced to the average of all artifact-free segments, and down-sampled to 250 Hz 
(Matlab function resample, which uses a polyphase anti-aliasing filter).

The pre-processed data were analyzed in two different frequency bands, low-alpha (6–9 Hz) and broadband 
(1–25 Hz). We chose the low alpha band given previous evidence showing that functional networks inferred 
from this frequency band were capable of distinguishing between people suffering from generalized epilepsy and 
healthy controls17,18. The broadband was considered in order to encapsulate the traditional clinical frequency 
bands (delta, theta, alpha, and most of beta43) and explore more broadly potential features in the epochs, while 
avoiding high frequencies which can embed muscle electrical activity44. A fourth-order Butterworth filter was 
applied with forward and backward filtering to minimize phase distortions.

Inferring functional networks from EEG.  The functional networks were inferred using a method based 
on the Phase Locking Factor (PLF)21–23 as previously described in refs.17,18. Again, we chose to use this functional 
network measure due to its demonstrated capability to distinguish generalized epilepsy from healthy controls17,18. 
Electrode locations were considered as nodes and PLF values as connectivity weights. For each pair of nodes i and 
j, we found the PLF:

∑= φ

=

ΔPLF
N

e1
ij

s k

N
i t

1

( )s
ij k

where Ns is the number of samples, and Δφij(tk) is the instantaneous phase difference between the signals 
recorded from electrodes i and j at time tk. The phase differences were computed using the Hilbert transform on 
the down-sampled, filtered signals. We also found the average time-lag τij between the two signals,

∑τ =










φ

=

Δarg eij
k

N
i t

1

( )s
ij k

Nodes i and j were considered connected if PLFij > 0 and τij > 0 with connection weight PLFij. We only con-
sidered non-zero time-lag PLF to avoid possibly artefactual connections due to volume conduction24. We further 
excluded spurious connections due to finite length time-series data. We generated 99 surrogates from the original 
EEG signals using the iterative amplitude-adjusted Fourier transform (IAAFT) with 10 iterations45,46. We rejected 
connections if their weights PLFij did not exceed the 95% significance level compared to the same connection 
weights as computed from the surrogates. This method yielded a directed weighted functional network aij from 
each data segment.

Mathematical model.  We studied the inherent propensity of a functional network to generate focal or 
generalized dynamics using a mathematical model at each network node17,19,20,34. The brain activity at node i was 
represented by a phase oscillator θi. We defined a ‘resting state’ as a phase close to a fixed stable phase θ(s) and an 
‘oscillatory state’ as a rotating phase. The resting state represented normal brain activity, whereas the oscillatory 
state depicted seizure-like activity. The phase oscillator obeyed the following ODE:

θ θ θ= − + + I t(1 cos ) (1 cos ) ( ),i i i i

where Ii(t) was the input current of node i. The magnitude of the current determined whether a phase oscillator 
was at rest (Ii < 0), or oscillating (Ii > 0). The boundary between the two states corresponds to a saddle-node on 
invariant circle (SNIC) bifurcation. This simple model has been shown to be a useful and reliable proxy of a more 
complex and biophysical meaningful model of epileptiform dynamics19. We assumed equivalence between nodes 
when in isolation (Ii(t) = I0) and consequently, the same steady state θ(s) for all nodes, which was obtained from 
setting θ = 0i ,

θ = −











+
−











.− I

I
Re cos 1

1
s( ) 1 0

0

At I0 < 0, there are two fixed points, one stable (θ(s)), and one unstable (−θ(s)). We took the real part so that 
θ(s) = 0 at I0 > 0.

In general, the input current Ii(t) encompassed noisy inputs and the interaction with the other nodes:

∑ξ θ θ= + + 


− − 
≠

( )I t I t K
N

a( ) ( ) 1 cos ,i
i

j i
ji j

s
0

( ) ( )

where I0 + ξ(i)(t) is noise, N is the number of nodes, aji is j, ith entry of the adjacency matrix that encodes the func-
tional network, K is a global scaling factor of the functional network, and θ(s) is the steady state of the in-neighbor 
j. The noisy inputs represented signals from other areas of the brain outside of the functional network under 
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consideration, which we assumed to follow a Gaussian distribution (with mean I0 and variance σ2). Each node 
received independent noise,

ξ ξ σ δ δ= − .′ ′⟨ ⟩t t t t( ) ( ) ( )i j
i j

( ) ( ) 2
,

The multiplier [1 − cos(θj − θ(s))] defined the output of node j which was an input to node i if there was a 
directed connection from node j to i, i.e. aji > 0. If node j was in the resting state, θj ≈ θ(s), then its output was 
approximately zero, whereas when it was oscillating it periodically reached its maximum output at θ(s) + π.

The model has three free parameters, I0, σ, and K. We used I0 = −1.2 and σ = 0.6 according to ref.19. Given that 
we aim to characterize the role of the network on the emergence of seizure-like activity, these parameters ensure 
that nodes are typically in the resting state and the transition to seizure-like activity is essentially a function of 
network interactions. Different choices of I0 and σ are not expected to qualitatively change our results19. Although 
the model has previously been used to study functional networks inferred from intracranial EEG and artificial 
networks19,47,48, it can be used to examine networks constructed from other data modalities.

Ictogenic spread.  The purpose of the mathematical model was to measure the propensity of a given func-
tional network to generate focal or generalized seizure dynamics in silico. We quantified the model-generated 
dynamics using the concept of Brain Network Ictogenicity (BNI)12,19,20,34, which is the average fraction of time that 
nodes spent in the oscillatory state:

∑=
N

t
T

BNI 1

i

sz
i( )

where tsz
i( ) is the time that node i spent in the oscillatory state during a total simulation time T. We used T = 4 × 106 

time steps and the oscillatory state was defined as any activity larger than a threshold as described in Lopes et al.19. 
This time tsz

i( ) depends on the global scaling factor K, and so does the BNI.
We have previously shown that BNI changes according to the global connectivity strength K19,34. Since BNI is 

a measure of the spiking activity across the network, a sharp transition in BNI over K means that for low K there 
is no spiking across the network and at some critical K there is a switch into all nodes spiking, i.e. generalised 
activity. In contrast, a slower transition means that by changing K there is a more gradual recruitment of nodes 
into spiking, implying that some nodes spike before others, i.e. focal dynamics. Thus, we hypothesize that if func-
tional networks from people with epilepsy underpin the emergence of generalized and focal dynamics, then those 
derived from people with GGE should be characterized by a steeper BNI curve relative to functional networks 
from people with mTLE. We therefore introduce a quantity called Ictogenic Spread (IS) which is the average slope 
of the BNI curve as a function of K.

In practice, we computed BNI for a number of different Ki values such that BNI would vary between 0.1 and 
0.9 (we used about 40 Ki values), found the slope between consecutive points, and averaged all slopes:

=
−

−
. < < . .+

+

K K
K K

KIS
BNI( ) BNI( )

, at 0 1 BNI( ) 0 9i i

i i

1

1

Note that by studying BNI as function of K we avoided an arbitrary choice of this parameter which scales the 
network influence on emerging dynamics47.

Data Availability
All materials (functional networks and code) are available upon request (contact m.lopes@exeter.ac.uk).

References
	 1.	 Fisher, R. S. et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the 

International Bureau for Epilepsy (IBE). Epilepsia 46(4), 470–472 (2005).
	 2.	 Scheffer, I. E. et al. ILAE classification of the epilepsies: position paper of the ILAE commission for classification and terminology. 

Epilepsia 58(4), 512–521 (2017).
	 3.	 Fisher, R. S. et al. Operational classification of seizure types by the International League Against Epilepsy: Position Paper of the ILAE 

Commission for Classification and Terminology. Epilepsia 58(4), 522–530 (2017).
	 4.	 Chen, Z., Brodie, M. J., Liew, D. & Kwan, P. Treatment outcomes in patients with newly diagnosed epilepsy treated with established 

and new antiepileptic drugs: a 30-year longitudinal cohort study. JAMA Neurol. 75(3), 279–286 (2018).
	 5.	 Noachtar, S. & Peters, A. S. Semiology of epileptic seizures: a critical review. Epilepsy Behav. 15(1), 2–9 (2009).
	 6.	 Benbir, G., Demiray, D. Y., Delil, S. & Yeni, N. Interobserver variability of seizure semiology between two neurologist and caregivers. 

Seizure 22(7), 548–552 (2013).
	 7.	 Pillai, J. & Sperling, M. R. Interictal EEG and the diagnosis of epilepsy. Epilepsia 47, 14–22 (2006).
	 8.	 Larsson, P. G. & Kostov, H. Lower frequency variability in the alpha activity in EEG among patients with epilepsy. Clin. Neurophysiol. 

116(11), 2701–2706 (2005).
	 9.	 Horstmann, M. T. et al. State dependent properties of epileptic brain networks: comparative graph–theoretical analyses of 

simultaneously recorded EEG and MEG. Clin. Neurophysiol. 121(2), 172–185 (2010).
	10.	 Quraan, M. A., McCormick, C., Cohn, M., Valiante, T. A. & McAndrews, M. P. Altered resting state brain dynamics in temporal lobe 

epilepsy can be observed in spectral power, functional connectivity and graph theory metrics. PLoS One 8(7), e68609 (2013).
	11.	 Van Diessen, E., Otte, W. M., Braun, K. P., Stam, C. J. & Jansen, F. E. Improved diagnosis in children with partial epilepsy using a 

multivariable prediction model based on EEG network characteristics. PLoS One 8(4), e59764 (2013).
	12.	 Chowdhury, F. A. et al. Revealing a brain network endophenotype in families with idiopathic generalised epilepsy. PLoS One 9(10), 

e110136 (2014).
	13.	 Coito, A. et al. Dynamic directed interictal connectivity in left and right temporal lobe epilepsy. Epilepsia 56(2), 207–217 (2015).

https://doi.org/10.1038/s41598-019-46633-7


9Scientific Reports |         (2019) 9:10169  | https://doi.org/10.1038/s41598-019-46633-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

	14.	 Coito, A. et al. Altered directed functional connectivity in temporal lobe epilepsy in the absence of interictal spikes: a high density 
EEG study. Epilepsia 57(3), 402–411 (2016).

	15.	 van Diessen, E., Otte, W. M., Stam, C. J., Braun, K. P. & Jansen, F. E. Electroencephalography based functional networks in newly 
diagnosed childhood epilepsies. Clin. Neurophysiol. 127(6), 2325–2332 (2016).

	16.	 Verhoeven, T. et al. Automated diagnosis of temporal lobe epilepsy in the absence of interictal spikes. Neuroimage Clin. 17, 10–15 
(2018).

	17.	 Schmidt, H., Petkov, G., Richardson, M. P. & Terry, J. R. Dynamics on networks: the role of local dynamics and global networks on 
the emergence of hypersynchronous neural activity. PLoS Comput. Biol. 10(11), e1003947 (2014).

	18.	 Schmidt, H. et al. A computational biomarker of idiopathic generalized epilepsy from resting state EEG. Epilepsia 57(10), e200–e204 
(2016).

	19.	 Lopes, M. A. et al. An optimal strategy for epilepsy surgery: Disruption of the rich-club. PLoS Comput. Biol. 13(8), e1005637 (2017).
	20.	 Petkov, G., Goodfellow, M., Richardson, M. P. & Terry, J. R. A critical role for network structure in seizure onset: a computational 

modeling approach. Front. Neurol. 5, 261 (2014).
	21.	 Tass, P. et al. Detection of n: m phase locking from noisy data: application to magnetoencephalography. Phys. Rev. Lett. 81(15), 3291 (1998).
	22.	 Lachaux, J. P., Rodriguez, E., Martinerie, J. & Varela, F. J. Measuring phase synchrony in brain signals. Hum. Brain Mapp. 8(4), 

194–208 (1999).
	23.	 Mormann, F., Lehnertz, K., David, P. & Elger, C. E. Mean phase coherence as a measure for phase synchronization and its application 

to the EEG of epilepsy patients. Physica D 144(3–4), 358–369 (2000).
	24.	 Bastos, A. M. & Schoffelen, J. M. A tutorial review of functional connectivity analysis methods and their interpretational pitfalls. 

Front. Syst. Neurosci. 9, 175 (2016).
	25.	 Brookes, M. J., Woolrich, M. W. & Barnes, G. R. Measuring functional connectivity in MEG: a multivariate approach insensitive to 

linear source leakage. Neuroimage 63(2), 910–920 (2012).
	26.	 Hipp, J. F., Hawellek, D. J., Corbetta, M., Siegel, M. & Engel, A. K. Large-scale cortical correlation structure of spontaneous oscillatory 

activity. Nat. Neurosci. 15(6), 884 (2012).
	27.	 Klimpe, S., Behrang-Nia, M., Bott, M. C. & Werhahn, K. J. Recruitment of motor cortex inhibition differentiates between generalized 

and focal epilepsy. Epilepsy Res. 84(2–3), 210–216 (2009).
	28.	 Ahmadi, M. E. et al. Side matters: diffusion tensor imaging tractography in left and right temporal lobe epilepsy. AJNR Am. J. 

Neuroradiol. 30(9), 1740–1747 (2009).
	29.	 Besson, P. et al. Structural connectivity differences in left and right temporal lobe epilepsy. NeuroImage 100, 135–144 (2014).
	30.	 Woldman, W. et al. Dynamic network properties of the interictal brain determine whether seizures appear focal or generalised. 

bioRxiv 576785 (2019).
	31.	 Honey, C. J. & Sporns, O. Dynamical consequences of lesions in cortical networks. Hum. Brain Mapp. 29(7), 802–809 (2008).
	32.	 Alstott, J. et al. Modeling the impact of lesions in the human brain. PLoS Comput. Biol. 5(6), e1000408 (2009).
	33.	 Sanz Leon, P. et al. The Virtual Brain: a simulator of primate brain network dynamics. Front. Neuroinform. 7, 10 (2013).
	34.	 Goodfellow, M. et al. Estimation of brain network ictogenicity predicts outcome from epilepsy surgery. Sci. Rep. 6, 29215 (2016).
	35.	 Sinha, N. et al. Predicting neurosurgical outcomes in focal epilepsy patients using computational modelling. Brain 140(2), 319–332 

(2017).
	36.	 Jirsa, V. K. et al. The virtual epileptic patient: individualized whole-brain models of epilepsy spread. Neuroimage 145, 377–388 (2017).
	37.	 Proix, T., Jirsa, V. K., Bartolomei, F., Guye, M. & Truccolo, W. Predicting the spatiotemporal diversity of seizure propagation and 

termination in human focal epilepsy. Nat. Commun. 9(1), 1088 (2018).
	38.	 Sinha, N. et al. Computer modelling of connectivity change suggests epileptogenesis mechanisms in idiopathic generalised epilepsy. 

Neuroimage Clin. 21, 101655 (2019).
	39.	 Allen, P. J., Polizzi, G., Krakow, K., Fish, D. R. & Lemieux, L. Identification of EEG events in the MR scanner: the problem of pulse 

artifact and a method for its subtraction. NeuroImage 8(3), 229–239 (1998).
	40.	 Allen, P. J., Josephs, O. & Turner, R. A method for removing imaging artifact from continuous EEG recorded during functional MRI. 

NeuroImage 12(2), 230–239 (2000).
	41.	 Azuma, H. et al. An intervention to improve the interrater reliability of clinical EEG interpretations. Psychiatry Clin. Neurosci. 57(5), 

485–489 (2003).
	42.	 Hatz, F. et al. Reliability of fully automated versus visually controlled pre-and post-processing of resting-state EEG. Clin. 

Neurophysiol. 126(2), 268–274 (2015).
	43.	 Buzsaki, G. Rhythms of the Brain (Oxford University Press, 2006).
	44.	 Whitham, E. M. et al. Scalp electrical recording during paralysis: quantitative evidence that EEG frequencies above 20 Hz are 

contaminated by EMG. Clin. Neurophysiol. 118(8), 1877–1888 (2007).
	45.	 Schreiber, T. & Schmitz, A. Improved surrogate data for nonlinearity tests. Phys. Rev. Lett. 77(4), 635 (1996).
	46.	 Schreiber, T. & Schmitz, A. Surrogate time series. Physica D 142(3–4), 346–382 (2000).
	47.	 Lopes, M. A. et al. Elevated ictal Brain network ictogenicity enables Prediction of Optimal seizure control. Front. Neurol. 9, 98 

(2018).
	48.	 Lopes, M. A., Goodfellow, M. & Terry, J. R. A model-based assessment of the seizure onset zone predictive power to inform the 

epileptogenic zone. Front. Comput. Neurosci. 13, 25 (2019).

Acknowledgements
MAL, MG, MPR, SNY and JRT gratefully acknowledge funding from the Medical Research Council [grant 
number MR/K013998/1]. MG, MPR, and JRT further acknowledge the financial support of the EPSRC [grant 
number EP/N014391/1]. MAL, MG, MPR, and JRT further acknowledge funding from Epilepsy Research UK 
[grant number P1505]. The contribution of MG and JRT was further generously supported by a Wellcome Trust 
Institutional Strategic Support Award [grant number WT105618MA]. MG further acknowledges support from 
the EPSRC [grant number EP/P021417/1]. MPR is also supported by Medical Research Council grant number 
MR/N026063/1 and the National Institute for Health Research (NIHR) Biomedical Research Centre at the South 
London and Maudsley NHS Foundation Trust. SP was supported by Epilepsy Research UK.

Author Contributions
Conceived the study: M.A.L., M.P.R., M.G. and J.R.T. Contributed simulations or data analysis: M.A.L., S.P. and 
S.Y. Wrote the paper: M.A.L., S.P., S.Y., M.P.R., M.G. and J.R.T.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-019-46633-7.
Competing Interests: The authors declare no competing interests.

https://doi.org/10.1038/s41598-019-46633-7
https://doi.org/10.1038/s41598-019-46633-7


1 0Scientific Reports |         (2019) 9:10169  | https://doi.org/10.1038/s41598-019-46633-7

www.nature.com/scientificreportswww.nature.com/scientificreports/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2019

https://doi.org/10.1038/s41598-019-46633-7
http://creativecommons.org/licenses/by/4.0/

