2022

Identification of North Sea areas suitable for cultivating Saccharina latissima as an alternative source of protein

Sykes, E.

http://hdl.handle.net/10026.1/20112

All content in PEARL is protected by copyright law. Author manuscripts are made available in accordance with publisher policies. Please cite only the published version using the details provided on the item record or document. In the absence of an open licence (e.g. Creative Commons), permissions for further reuse of content should be sought from the publisher or author.
Identification of North Sea areas suitable for cultivating *Saccharina latissima* as an alternative source of protein

Ella Sykes

Project Advisor: Dr Gillian Glegg, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, PL4 8AA

Abstract

Demands for food resources are increasing with the growing human population and the impacts of climate change on agricultural land. Protein is an essential macronutrient for human well-being and supplies are likely to face a global security crisis in the foreseeable future. However, research has shown that the brown seaweed species *Saccharina latissima* (*S. latissima*) could be an alternative plant-based source of protein for human consumption that can be sustainably farmed under North Sea conditions. Yet seaweed farming currently remains an underexploited resource in the United Kingdom (UK). This study aims to identify areas suitable for *S. latissima* cultivation in the exclusive economic zone of England’s North Sea, to help decision-makers adapt to challenges in finding sustainable ways to feed the population. A multi-criteria decision analysis was used to identify twenty planning, technical and environmental constraint variables and their criteria for developing an *S. latissima* aquaculture site. The integrated methodical approach then used a geographical information system to perform a Boolean modelling technique that spatially mapped out constraints across the study area to create a suitability map. Results identify and illustrate the whereabouts of ~2.05 million hectares (~20,500km²) in the English North Sea that have the capacity for *S. latissima* cultivation. Findings conclude there is enough scope within the established Boolean areas for *S. latissima* yields to make meaningful contributions towards the UK’s protein supply. However, analysis indicated that *S. latissima* should be regarded as a high-quality food source rather than being viewed solely for potential protein content. It is recommended that future work investigates the Boolean areas in further detail by adding a weighted suitability overlay to identify between suitable and optimal areas for *S. latissima* aquaculture, which will strengthen site selection decision-making.

Keywords: Aquaculture, Boolean, cultivation, GIS, macroalgae, MCDA, North Sea, plant-based protein, Saccharina Latissima, seaweed, site selection, sugar kelp, sustainability, UK.
Introduction

Project rationale: Global food security challenges

Agricultural land, climate change and resource demands
A staggering 50% of Earth’s habitable land is used to produce food for human consumption (Roser et al., 2019). These agricultural practices are contributing towards the acceleration of climate change (Carter et al., 2017). Meanwhile, climate change is diminishing the yields from agricultural practices (Malhi et al., 2021). This relationship is subsidising a network of positive feedback loops that are pushing climate change towards a threshold whereby any human intervention to reverse consequences will be trivial (IPCC, 2021).

The increased magnitude and frequency of extreme weather events have conspicuously changed previously stable seasonal cycles and decreased the fertility of agricultural land or destroyed it completely (Qiu et al., 2022; Cogato et al., 2019). This is challenging farmers to plan harvests and produce high yields impacting food security and socio-economics on a global scale (Mbouw et al., 2019). The deterioration of agricultural productivity is also being amplified by increasing occurrences of saltwater inundation in coastal regions, due to flooding caused by sea level rise (Lindsey, 2022; Duarte et al., 2020; Spencer et al., 2015) which is reducing the quality of agricultural soil (DEFRA, 2022).

Since 2005 the global population has been rising by approximately 83 million people per year and the United Nations (2019) anticipates figures to reach 8.6 billion by 2030, and 9.8 billion by 2050. In addition, long-term trends show growth in the global gross domestic product (FAO, 2021) which correlates to a growing consumption of resources (Alper, 2018). Including the global per capita daily energy and protein intake (Roser et al., 2019) (figure 1), which is further increasing the pressure on food supplies to meet their demand. This is concerning as the world will need 60% more food by 2050 assuming there is no reduction to the current amount of food waste (FAO, 2012).

Bottom-up consumer food demands
Debating which food source is a better or worse burden on the environment is subject to conscious and subconscious bias and can be assessed from many different perspectives (Murphy, 2020). However, as the landmass available for agriculture is shrinking and becoming increasingly unreliable, a workable solution could be to sustainably utilise the ocean’s resources to produce an alternative source of protein (Cicin-Sain, 2015). Moreover, it is agreed that primary productivity supports the metabolic requirements of every species above in the food chain and that 90% of energy is lost when transferred to the next trophic level (only 10% is converted into biomass) (Eddy et al., 2021). Therefore, transfer inefficiency problems arise. However, if people replaced the consumption of higher trophic levels with primary producers’ energy could be conserved (Eddy et al., 2021). Recent decades have brought demands that would support this transition towards protein alternatives to dairy, meat, and fish, as shown in figure 1 which illustrates a growing consumption of plant-based protein in the UK.
For instance, the number of vegans living in the UK was ~600,000 in 2019 which was a 300% increase from 2014 (Howard, 2021). Additionally, 14% of UK adults currently follow a meat-free diet and the number of omnivores eating meat-free meals is also increasing (Nilsson, 2019). Protein extraction using an environmentally sustainable yet feasible method that complies with a plant-based diet is required to feed this request. Yet challenges arise as although for multiple reasons including poor dietary choice anyone can develop malnourishment, people who consume plant-based diets are more susceptible to regularly lacking in essential amino acids (Kiely et al., 2021) and micronutrients, including iodine (Fallon et al., 2020; Grouth-Jacobsen et al., 2020) and vitamin B-12 (Kapoor et al., 2017). Furthermore, vegans may ingest higher volumes of pesticides when compared to non-vegans (Van et al., 2009).

However, macroalgae can contain an abundance of micronutrients and proteins (Patarra et al., 2011) and its cultivation alleviates many terrestrial-based farming issues as it does not require fresh water, fertiliser or rely on arable land that could be diminished by intense precipitation and droughts (Stanley et al., 2019). It may also
not require pesticides; however, farm infrastructure could still utilise a form of antifouling (Zheng et al., 2019).

Theoretical background to macroalgae cultivation

Macroalgae
Seaweeds are benthic multicellular algae taxonomically classified based on their photosynthetic pigment combinations (Pereira, 2016). They are usually restricted to relatively shallow coastal waters as they must receive adequate sunlight to photosynthesise whilst simultaneously anchoring their holdfasts (a root-like structure) to a substrate (Yesson et al., 2015). Brown seaweeds can inhabit the subtidal zone as they contain dominant ancestry photosynthetic carotenoid pigments such as, xanthophyll (yellow pigment) and fucoxanthin (brown pigment, responsible for their brown characteristics), which enables them to absorb light in parts of the spectrum where chlorophyll is less efficient (O’Sullivan, 2010). This wide absorption range allows brown seaweed to grow at greater depths than green (Pereira, 2016).

Saccharina latissima
The demand for seaweed-derived products in Europe is increasing (Kim et al., 2017). However, harvesting seaweed is not an environmentally feasible method to meet the growing demands as wild seaweed stocks may become overexploited (Callaway, 2015). Though, seaweed aquaculture would alleviate this risk whilst yielding ecosystem services and socio-economic benefits (Buck and Grote, 2018).

Kelp (phylum Ochrophyta, order Laminariales) is a category of brown seaweed which is a dominant type of macroalgae in aquaculture, and Saccharina latissima (S. latissima) also known as Sugar Kelp, is a brown kelp species commonly spread throughout Europe (Portugal to Norway) (Stanley et al., 2019). It is also the most cultured European seaweed species because it has a rapid biomass growth rate (Bak et al., 2018; Handå et al., 2013), and commercially important tissue content for food applications (Stévant et al., 2017; Marinho et al., 2015). Such as, the structural carbohydrate alginic acid (a complex polysaccharide used as a stabilizer and emulsifier) (Harmsen, 2014), and the storage carbohydrate mannitol (used as a sweetener), along with containing proteins (Stanley et al., 2019). However, despite S. latissima proven to be successfully farmed under North Sea conditions (Kieckens, 2021; Broch et al., 2019; Van den Burg et al., 2013), UK seaweed cultivation remains an underexploited resource (Cai, 2021).

Cultivating S. latissima as a source of protein
There are many methods for farming S. latissima and depending on the farm site characteristics different approaches to spore production, seeding, harvesting and post-harvest treatment are used (Forbord et al., 2020; Stanley et al., 2019; Blikra et al., 2019). However, a pH-shift extraction method (Harrysson et al., 2018) and the use of sonication and enzymes have proven to be effective methods for extracting proteins from S. latissima (Klyve, 2020). Furthermore, though the total protein content of S. latissima depends on environmental conditions, season, and processing methods (Marinho et al., 2015a), S. latissimas protein content has shown to be highest when out planted in autumn and harvested in early spring (Bak et al., 2019), giving S. latissima the potential to be a suitable choice for producing an alternative source of protein (Pereira, 2016).
Additionally, *S. latissima* contains an abundance of iodine (Aakre *et al*., 2021), a vital mineral for the secretion of thyroid hormones triiodothyronine and thyroxine (Zimmermann, 2011; Opazo *et al*., 2020). This is significant as, a study on UK individuals following omnivore, vegetarian and vegan diets found that vegans and vegetarians had a significantly higher risk of iodine deficiency when compared to omnivores (Eveleigh *et al*., 2022). Furthermore, *S. latissima* also contains photosynthetic bioactive compounds that are absent from terrestrial plants (Brown *et al*., 2014) such as fucoxanthin, which has antioxidant and anticancer properties (Wang *et al*., 2019; Pangestuti and Kim, 2017).

Aim and objectives

This paper aims to identify suitable areas for *S. latissima* cultivation as an alternative source of protein for human consumption within England's North Sea exclusive economic zone (EEZ), an area where seaweed cultivation has potential but is currently underexploited. The outcomes of this research aim to provide a valuable decision-making tool that involves stakeholders to implement an English North Sea *S. latissima* farm, that ultimately could contribute towards sustainable protein production.

This study's objectives to achieve the aim are:

- To examine the main requirements for *S. latissima* aquaculture.
- To identify and set appropriate criteria parameters for each requirement through a multi-criteria decision analysis.
- To conduct geographical information system (GIS) modelling to map out the parameters of each variable into constraint layers within the study area (English North Sea EEZ).
- To identify any areas that have the potential for *S. latissima* cultivation using a Boolean modelling technique and analyse the feasibility for suitable areas to produce a source of protein.

Methodology

Study procedure

The main parameters which need to be considered to determine the location for an aquaculture site include technical, planning and biological suitability variables (MMO, 2020; Buck *et al*., 2018). Every variable within these parameters was identified to evaluate if the constraint could jeopardise the instalment of an aquaculture site. Next, a multi-criteria decision analysis (MCDA) which has been approved as an effective method for geovisualisation studies (Malczewski and Rinner, 2015), was conducted to determine the relevant criteria for each factor. The selected constraints were then mapped out and overlayed using a Boolean modelling technique, which meant that only places that met every criterion were classed as an appropriate area for *S. latissima* cultivation. Then the Boolean modelling results were analysed to assess the area's potential feasibility to yield a source of protein. This study process has been depicted throughout the flow diagram in figure 2a, b, c and d.
Model description

The Boolean data logic is that there can only be two possible values (true or false) meaning that an area either is or is not suitable. Boolean modelling was the chosen technique as it has been verified as an appropriate method by other spatial analysis studies' including: Jahangiri *et al.*, 2016; Eskandari *et al.*, 2016; Longdill *et al.*, 2008; Al-Adamat *et al.*, 2010; Thomas *et al.*, 2019 and Machiwal *et al.*, 2015. Additionally, Boolean results will clearly illustrate areas that have or do not have a capacity for *S. latissima* farming which will reduce potential stakeholder conflicts (Eastman, 2006).

Software and materials

Scientific literature, secondary data, and GIS software were used to conduct the MCDA and map out constraints for the Boolean assessment. ArcGIS was the selected computer program as it is a powerful tool that supports input, visualisation, and modelling for spatial data (Malczewski, 2010). The data search focused on ArcGIS compatible datasets and for this data availability and cost-free access were factors that influenced the selection of datasets (table 1).

Figure 2a: Step 1, illustration of the aim and identification of variables, within the sequence of steps taken in the methodological procedure to establish the research aim. *S. latissima* refers to *Saccharina latissima*, EEZ refers to exclusive economic zone.
Figure 2b: Step 2, illustration and explanation of the sequence of steps taken in the multi-criteria decision analysis within the methodological procedure to establish the research aim. *S. latissima* refers to *Saccharina latissima*, EEZ refers to exclusive economic zone.
Figure 2c: Step 3, illustration of the sequence of steps taken in the methodological procedure to establish the research aim. *S. latissima* refers to *Saccharina latissima*, EEZ refers to exclusive economic zone. Graphic contributions based on materials from: MMO (2019); EMODnet (2016); and ABPmer (2008).
Uncertainties
The Boolean approach has no trade-off as it is a straightforward overlay of all maps. Thus, the Boolean model assumes that each criterion has equal significance but, not all layers will have the same impact on the suitability of an aquaculture site.

Decision making
To carry out the GIS-based MCDA all chosen criteria their justification and the setting of their parameters was reliant upon decision-making, this implies there will be uncertainties related to human error. To conclude a MCDA is an individual tool thus, by applying different reasoning and interpretation of data the choices made throughout this study are subject to discussion.

Data sources
All GIS databases (table 1) have been quality controlled by the platform authoriser (ArcGIS, 2021). However, this report acknowledges that it had no control over the accuracy of data quality inspections.
Table 1: Data source selection of the chosen ArcGIS and other geodatabase layers. The environmental suitability index layer is an intersection of salinity, temperature, light climate and nutrient variables which has been used to establish areas suitable for *S. latissima* growth.

<table>
<thead>
<tr>
<th>Layer</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authorised (2022) seabed aggregate extraction sites</td>
<td>The Crown Estate, 2022</td>
</tr>
<tr>
<td>Cables and pipelines</td>
<td>Infrapedia, 2018; TeleGeography, 2016</td>
</tr>
<tr>
<td>Exclusive economic zone</td>
<td>UK Hydrographic Office, 2018</td>
</tr>
<tr>
<td>Fishing density</td>
<td>The Maritime and Coastguard Agency, 2020</td>
</tr>
<tr>
<td>Marine protected areas</td>
<td>JNCC, 2022</td>
</tr>
<tr>
<td>Marine Traffic</td>
<td>The Maritime and Coastguard Agency, 2020</td>
</tr>
<tr>
<td>Munition dumps</td>
<td>EMODnet, 2018</td>
</tr>
<tr>
<td>Offshore wind cable area agreement</td>
<td>The Crown Estate, 2021</td>
</tr>
<tr>
<td>Offshore wind energy sites</td>
<td>Esri, 2017</td>
</tr>
<tr>
<td>Offshore wind farm development zones</td>
<td>Global Offshore Wind Farm Database, 2019; OSPAR, 2016</td>
</tr>
<tr>
<td>Oil and gas fields</td>
<td>Leeuwarden, 2021</td>
</tr>
<tr>
<td>Shipping ports</td>
<td>National Geospatial Intelligence Agency, 2018</td>
</tr>
<tr>
<td>UK territorial limit</td>
<td>Seafish, 2021</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Layer</th>
<th>Data source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bathymetry</td>
<td>EMODnet, 2016; North Sea Observation and Assessment of Habitats, 2014</td>
</tr>
<tr>
<td>Environmental suitability index</td>
<td>MMO, 2019</td>
</tr>
<tr>
<td>Mean peak current speed</td>
<td>ABPmer, 2008</td>
</tr>
<tr>
<td>Mean significant wave height</td>
<td>ABPmer, 2008</td>
</tr>
<tr>
<td>Protected wrecks</td>
<td>Maritime & Coastguard Agency, 2020</td>
</tr>
</tbody>
</table>

Results

Tables 2a – 2d provide the criteria decision for each variable (a limitation or conflicting use of the North Sea) and the logic behind the decision, which was concluded by analysing multiple existing criteria for the site selection of an *S. latissima* farm. After the MCDA the established criteria for each variable (either defined as a constraint or factor) was then used as the parameters to create a Boolean suitability map. The Boolean model outcome was achieved by identifying areas that did not meet the criteria parameters (table 2a – 2d) for each variable and programming those locations as not suitable, which generated the spatial whereabouts of zones that are either suitable or unsuitable for the placement of an *S. latissima* aquaculture site.

- *S. latissima*’s biological suitability (table 2a) shows that all environmental variables are fundamental for the growth of *S. latissima* thus, areas which have unsuitable conditions cannot be considered for the placement of a seaweed farm.
• All soft and hard planning variables (tables 2b and 2c, respectively) will influence the placement of a seaweed farm. However, the MCDA showed that hard planning variables were mainly constraints, meaning that a potential cultivation site cannot coexist among the location of these variables. Whereas table 2b showed that the criteria parameters for soft planning variables were more factor-based.

• Table 2d identified the criteria for culture-specific technical suitability and found that to an extent the ability for a seaweed cultivation site to withstand offshore conditions relies upon the selected farm infrastructure, rather than the prevailing environmental conditions. For example, table 2d showed that when considering bathymetry although the seaweed itself will usually be in the top 15m of the water column, the farm can be situated in deeper waters as anchors and floats hold the kelp vertically in place. Every location within the study area that did not meet the criteria of the technical parameter decisions was programmed as unsuitable within the Boolean GIS modelling.

Table 2a: Multi-criteria decision for environmental variables that are all based on the natural growth of *S. latissima* bar current speed which represents values for cultivation.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Decision</th>
<th>Criteria</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sea Surface Temperature (SST) (°c)</td>
<td>Factor</td>
<td>Prohibit cultivation from areas where the annual extreme SST is <2°C and / or >18°C</td>
<td>• The environmental threshold for the growth of S. latissima’s is between 2°C - 18°C (Bolton and Lüning, 1982; Kerrison et al., 2015).</td>
</tr>
<tr>
<td>Salinity parts per thousand (ppt)</td>
<td>Factor</td>
<td>Prohibit cultivation from areas where the annual extreme salinity is <15 ppt</td>
<td>• Because of effects on osmotic processes salinity <15 ppt is not suitable for the growth of S. latissima (Kerrison et al., 2015; Smale et al., 2016).</td>
</tr>
<tr>
<td>K_d Photosynthetically active radiation (PAR) 10% light depth (m)</td>
<td>Factor</td>
<td>Prohibit cultivation from areas where there is <1 K_d (PAR) 10% light depth (m)</td>
<td>• Due to photosynthetic requirements $<1 K_d$ (PAR) 10% light depth (m) is unsuitable for S. latissima growth (MMO, 2019; van der Molen et al., 2018; Guo et al., 2015).</td>
</tr>
<tr>
<td>Winter total oxidised nitrogen (TOxN mmol/m³)</td>
<td>Factor</td>
<td>Prohibit cultivation from areas where the annual extreme TOxN is <4 mmol/m³</td>
<td>• Nitrates are essential for seaweed growth and although during winter kelps can store nitrogen to make proteins in spring (Van den Burg et al., 2013), a TOxN <4 mmol/m³ is unsuitable for the environmental threshold of S. latissima (Broch et al., 2013; Kerrison et al., 2015).</td>
</tr>
<tr>
<td>Current speed (m/s)</td>
<td>Factor</td>
<td>Prohibit cultivation from areas where the annual extreme current speed is >1.5 m/s or <0.1 m/s</td>
<td>• Buck et al., (2005) and the MMO (2019) recommend current speeds of <1.5m/s for the biological suitability of farmed S. latissima.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Current speeds <0.1m/s may not be suitable to support the growth of S. latissima (MMO, 2019).</td>
</tr>
</tbody>
</table>
Table 2b: Criteria for the planning suitability regarding soft constraint variables for *S. latissima* cultivation.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Decision</th>
<th>Criteria</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marine traffic</td>
<td>Factor</td>
<td>Prohibit cultivation from areas with >20.1 vessels crossing per week (these areas include commercial shipping lanes)</td>
<td>• Thomas et al. (2019) and Nunes da Silva Ramos (2016) agree that areas with a vessel traffic density of > 20.1 vessels crossing per week are suitable for macroalgae cultivation site selection.
• Aquaculture areas should not coincide with commercial shipping lanes due to socio-economic impacts (Roesijadi et al., 2011; Siddiqui, 2018).</td>
</tr>
<tr>
<td>Fishing intensity</td>
<td>Factor</td>
<td>Avoid cultivation in fishing grounds, identified by fishing vessel tracks (≥10h fishing / km2 / month)</td>
<td>• Seaweed cultivation should be restrained from fishing and trawling grounds (Siddiqui, 2018), which can be identified by analysing GIS-based fishing vessel track density (Mendo et al., 2019; Jennings and Lee, 2012).
• For instance, EMODnet (2020) has depicted areas of ≥ 10 hours of fishing activity per km2 per month as significant fishing grounds.</td>
</tr>
<tr>
<td>Marine Protected Areas (MPA's)</td>
<td>Constraint</td>
<td>Prohibit cultivation within MPA's</td>
<td>• Existing legal framework does not automatically authorize aquaculture in MPA's (Wood et al., 2017; Capuzzo et al., 2016).
• However, dependent on the outcome of site-specific surveys permission may be granted (Wood et al., 2017).</td>
</tr>
<tr>
<td>Habitats</td>
<td>Factor</td>
<td>Prohibit cultivation within protected habitats (MPA’s)</td>
<td>• Protected habitats can be avoided by prohibiting cultivation within all MPA’s (JNCC, 2021; Wood et al., 2017).</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Assess local habitats upon site selection</td>
<td>• After a proposed farm site is selected the surrounding habitats need to be assessed (e.g., this could include an environmental impact assessment) (Wood et al., 2017).</td>
</tr>
<tr>
<td>Area limitations</td>
<td>Constraint</td>
<td>Prohibit cultivation within territorial seas and outside of the English EEZ</td>
<td>• An English cultivation site is restricted to within the English exclusive economic zone (EEZ) (MMO, 2019a).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Options for the selection of a farm site may be limited within territorial seas (MMO, 2019a) due to stricter planning regulations for example, those posed by The Crown Estate. Thus, legally permitting farming in these waters can be challenging and it also has a greater risk of stakeholder conflicts (Wood et al., 2017).</td>
</tr>
</tbody>
</table>
Table 2c: Criteria for the planning suitability, regarding hard constraint variables for *S. latissima* cultivation.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Decision</th>
<th>Criteria</th>
<th>Reason</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cables and Pipelines</td>
<td>Constraint</td>
<td>Prohibit cultivation on and above cables and Pipelines</td>
<td>• Cultivation infrastructure (e.g., anchors) that drift or are deployed onto a cable or pipeline can cause displacement and breakages resulting in high economic damage for repair costs (European Subsea Cables Association, 2020; Anderson, 2017).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• This is partially concerning in the North Sea due to the significance of electricity cables transporting energy from offshore wind farms to the mainland (European Commission, 2021; Office for National Statistics, 2021a).</td>
</tr>
<tr>
<td>Ports</td>
<td>Factor</td>
<td>Restrain cultivation in and around close proximities to ports</td>
<td>• Sites near a port may act as an auxiliary to cultivation efficiency by providing loading and unloading facilities (Roberts et al., 2021).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• However, farms in a very close proximity can cause marine traffic associated obstructions due to the overcrowding of sea space (Thomas et al., 2019).</td>
</tr>
<tr>
<td>Munition dumps</td>
<td>Constraint</td>
<td>Prohibit cultivation over munition dumps</td>
<td>• Munition dumps are a human and marine health hazard risk and thus should be avoided (Beck et al., 2018; Wilkinson, 2017).</td>
</tr>
<tr>
<td>Protected historic wrecks</td>
<td>Constraint</td>
<td>Prohibit cultivation over protected wrecks</td>
<td>• In the absence of a licence granted by the Secretary of State it is a criminal offence to deploy equipment (e.g., anchors) or obstruct access to protected wreck sites (Historic England, 2015).</td>
</tr>
<tr>
<td>Offshore energy sector</td>
<td>Constraint</td>
<td>Prohibit cultivation within licenced energy sector areas</td>
<td>• Although the use of sea space can be optimised by co-locating offshore wind farms or oil platforms with aquaculture sites (Lee, 2020; Jansen et al., 2017), permitting this involves risks (Lacroix and Pioch, 2011) and requires stakeholder collaborations that cannot be guaranteed. Subsequently, farm site authorisation within the energy sector is not ensured (Van den Burg et al., 2020).</td>
</tr>
<tr>
<td>Marine aggregate extraction zones</td>
<td>Constraint</td>
<td>Prohibit cultivation within marine aggregate extraction zones</td>
<td>• Areas of current licensed marine aggregate extraction zones will need to be avoided due to a conflict of interest and the release of surplus sediment into the water column which affects seaweed growth (Kenny et al., 2018).</td>
</tr>
</tbody>
</table>
Table 2d: Multi-criteria decision for culture-specific technical suitability variables for S. latissima cultivation.

<table>
<thead>
<tr>
<th>Variable</th>
<th>Decision</th>
<th>Criteria</th>
<th>Reason</th>
</tr>
</thead>
</table>
| Significant wave height| Factor | Prohibit cultivation from areas where the significant wave height can exceed 2.5m | • Cultivated *S. latissima* in the North Sea and Faroe Islands have shown to have a peak wave height tolerance of approximately 6.5m (Buck and Buchholz, 2005) and 8m (Buck *et al.*, 2018), respectively.
• The MMO (2019) considers an optimum farm wave height of <4.
• The Crown Estate (2019) and Bahaj *et al.*, (2020) suggests that significant wave heights exceeding >2.5m create unsafe working conditions.
• Zhu *et al.*, (2021 and 2020) found that *S. latissima* aquaculture attenuates waves, suggesting that suspended canopies could tolerate high energy wave environments. |
| Bathymetry | Factor | Prohibit cultivation from areas where the bathymetry is less than -5m or greater than -200m | • The MMO (2020 and 2019a) recommend depths deeper than 4m.
• Nylund (2016) found that depths of 100m can be considered practical.
• *S. latissima* has been successfully cultivated where the infostructure reached depths of -50 to -200m (Bak *et al.*, 2018).
• Bahaj *et al.*, (2020) and The Crown Estate (2019) agree that, at depths >60m below the lowest astronomical tide level (LAT) operating a project becomes less economically feasible, and shallow sites (less than -5m below LAT) pose operational hazards. |
| Seafloor substrate | Factor | Infostructure dependent | • Although a firm substrate may be the most suitable for the use of moorings for long-lines, cultivation anchors are selected depending on the type of seafloor substrate thus, substrate will not restrict the positioning of a seaweed farm (Cardia *et al.*, 2015). |
| Current speed | Factor | Prohibit cultivation from areas where the current speed is >1.5 or <0.1 (m/s) | • Despite limited research on the recommended current speed for seaweed cultivation it is considered a critical technical factor as it exerts stress on aquaculture infostructure (Cardia *et al.*, 2015).
• Buck and Buchholz (2005) found the infostructure current speed tolerance of a North Sea *S. latissima* farm was ~1.5m/s before the kelp holdfasts became displaced.
• The MMO (2019) recommends a current speed of between <1.5 - >0.1m/s for the biological suitability of farmed *S. latissima*. |
Tables 2a – 2d: For this study the criteria decisions for each variable were considered a constraint if all the geographical areas of the variable are unsuitable. That is, if they completely constrained or physically prevented the development of an aquaculture site. For example, this could be legislative or political boundaries (e.g., marine protected areas and exclusive economic zones) or barriers (e.g., oil platforms). Whereas the criteria decisions for each variable were considered as a factor, if out of all the geographical regions where the variable can be found some of the areas were suitable, but in other areas where the same variable is present the location is unsuitable. For example, this could be environmental variables (e.g., salinity, where areas <15 ppt are unsuitable but areas >15 ppt are suitable) or planning variables (e.g., marine traffic, where areas that have >20.1 vessels passing per week are unsuitable but areas of <20.1 are suitable).

Main findings
The North Sea is an intensively utilised and crowded area with many socio-economic activities competing for space. Figure 3 acknowledges the influence of the variables from each layer (environmental, planning and technical suitability factors) on the site selection for *S. latissima* cultivation. Ultimately, figure 3 shows that soft constraints are the most limiting in terms of space availability. However, tables 2a – 2d indicated that hard planning variables (figure 3) have the highest restrictions in terms of physical constraints preventing the implementation of an *S. latissima* farm. Yet, many of the restrictions posed by technical variables (figure 3, table 2d) can be mitigated by decisions such as the choice of structural design and cultivation technology.

Key results
The Boolean model is the result of overlaying areas that did not meet the criteria of every input layer (to view individual layers involved in creating the Boolean model please refer to this paper’s supplementary material). Figure 4 is a geovisualisation of the Boolean model results showing there is scope for the growth and farming of *S. latissima* in the English EEZ within the North Sea region. The suitable regions are all spatially distributed offshore in exposed areas and can be divided into a few smaller isolated sections and one more extensive zone. However, when combined suitable areas cover ~2.05 million hectares (~20,500km²).
Figure 3: Boolean areas within each section (environmental, technical and planning) that will confine the development of an *Saccharina latissima* farm. These results have been formed from the Boolean modelling of each criterion (established through a multi-criteria decision analysis in tables 2a – 2d) from the four constraint categories: Environmental variables, technical variables, soft planning variables and hard planning variables. Made using ArcGIS with all data and base layer sources from table 1.
The aim of this investigation was to identify suitable areas to cultivate *S. latissimi* as an alternative source of protein for human consumption in England’s North Sea EEZ. This study has produced a Boolean suitability index for *S. latissimi* farming that incorporates planning, technical and environmental constraints, which to the best of the author’s knowledge has not been attempted before within the chosen study area. Results from the Boolean model have clearly demonstrated the whereabouts of ~2.05 million hectares (~20,500 km²) where there is scope for *S. latissima* cultivation. This area is roughly equivalent to the land coverage of Wales (~20,780 km²) (figure 6) which indicates there is large capacity for cultivation within the North Sea. These results will potentially act as a valuable geographical decision-making tool that could help to reduce stakeholder conflicts when selecting areas for the implementation of a North Sea *S. latissima* farm; that could produce a more sustainable source of protein in comparison to traditional UK aquaculture and agriculture methods.

Evaluation of *S. latissima* cultivation within Boolean areas

The next sub-sections (potential biomass production – amino acid profile and quality) investigates previous findings and current statistics. The reasoning behind this is to

Figure 4: Suitability map of all areas combined from each section (environmental, technical and planning variables) that are either unsuitable (a) or suitable (b) for *Saccharina latissima* cultivation. This figure incorporates the layering of multi criteria from the planning, environmental and technical variable datasets, that together have created the spatial index of the Boolean suitable areas. Made using ArcGIS with all data and base layer sources from table 1.
establish a baseline so that results from this study’s Boolean modelling can be related to the present state of knowledge within the existing field of *S. latissima* cultivation.

Potential biomass production

There are large variations in the predicted biomass that an *S. latissima* farm can produce (table 3). For instance, under optimum conditions 57.5 tonnes (t) of dry weight (DW) *S. latissima* could be produced per hectare (ha) (0.01km²) per year (Sharma *et al*., 2018) (table 3). In contrast, other trials have estimated the annual DW production of *S. latissima* at 4.2 (t ha⁻¹) (Pechsiri *et al*., 2016) (table 3).

Table 3: Previously published yield estimates for *S. latissima* cultivation, by fresh weight biomass potential in different geographical regions. Skjermo *et al*., (2014) has approximated that *S. latissima* biomass is 85% water weight, so the dry weight (15%) has been calculated for every fresh weight reference using this value. Literature was reviewed using Google Scholar with key search terms: *S. latissima*, cultivation and biomass. t ha⁻¹, refers to tonnes per hectare (0.01 km²), IMTA is integrated multi-trophic aquaculture and per year relates to one cultivation cycle.

<table>
<thead>
<tr>
<th>Fresh weight biomass yield (t ha⁻¹) per year</th>
<th>Dry weight (t ha⁻¹) per year</th>
<th>Location</th>
<th>Remark</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>28</td>
<td>4.2</td>
<td>Sweden</td>
<td>Upscaled from small-scale field trials.</td>
<td>Pechsiri et al., 2016</td>
</tr>
<tr>
<td>29</td>
<td>4.4</td>
<td>New England, North East USA</td>
<td>Estimations of a 1 ha hypothetical kelp farm, based on years of S. latissima cultivation yields.</td>
<td>Yarish et al., 2017</td>
</tr>
<tr>
<td>40</td>
<td>6</td>
<td>Galicia, Spain</td>
<td>Estimates from trial site biomass values.</td>
<td>Peteiro and Freire, 2013</td>
</tr>
<tr>
<td>45</td>
<td>6.8</td>
<td>Western Norway</td>
<td>Upscaled potential, from the IMTA of Salmon and S. latissima.</td>
<td>Fossberg et al., 2018</td>
</tr>
<tr>
<td>75</td>
<td>11.3</td>
<td>Norway</td>
<td>Model based estimate for average within entire Norwegian baseline.</td>
<td>Broch et al., 2019</td>
</tr>
<tr>
<td>95</td>
<td>14.3</td>
<td>Eastern Canada</td>
<td>Recalculated by Broch et al., (2019) from a yield of 19.95t per 0.21ha.</td>
<td>Reid et al., 2013</td>
</tr>
<tr>
<td>170</td>
<td>25.5</td>
<td>Norway</td>
<td>Predictions from an analysis on seaweed biobased products.</td>
<td>Skjermo et al., 2014</td>
</tr>
<tr>
<td>200</td>
<td>30</td>
<td>Norway</td>
<td>Based on values that have been upscaled.</td>
<td>Masson et al., 2015</td>
</tr>
<tr>
<td>220</td>
<td>33</td>
<td>Scotland</td>
<td>Upscaled from small scale field trials in IMTA.</td>
<td>Sanderson et al., 2012</td>
</tr>
<tr>
<td>230</td>
<td>34.5</td>
<td>Norway</td>
<td>Model-based estimate for a (September deployment) maximal yield in the entire Norwegian baseline.</td>
<td>Broch et al., 2019</td>
</tr>
<tr>
<td>383</td>
<td>57.5</td>
<td>Central Norway</td>
<td>Upscaled by Broch et al., (2019) from yield reports of 38.3kg / m² from February - June.</td>
<td>Sharma et al., 2018</td>
</tr>
</tbody>
</table>

Mean value = 138
Mean value = 21
Standard deviation = 113
Standard deviation = 17
This is because variables such as time of out planting, harvesting, the depth and spacing of long lines and nutrient availability, differ between sites and approximations. However, the mean DW value among reviewed literature (key Google Scholar search terms: S. latissima, cultivation and biomass) is 21 (t ha\(^{-1}\)) (table 3). This potential production is over double in comparison to some of the UK’s most cultivated arable primary producers such as wheat (DEFRA, 2020) (figure 5).

Potential protein production

Research has highlighted that the composition of macronutrients in S. latissima is subject to debate (Stanley et al., 2019). For instance, values of the percentage of protein in S. latissima have been found to considerably range between 4.3% - 26% (Bak et al., 2019; Pereira, 2016). This is partly due to factors such as the timing of harvest as S. latissima’s composition fluctuates throughout different seasons (Tiwari and Troy, 2015) for instance, S. latissima reaches its highest protein content in autumn – early spring while peak carbohydrate content and biomass yields occur in the summer months (June – August) (Bak et al., 2019; Schiener et al., 2015).

Furthermore, different offshore cultivation sites can have unique environmental conditions including nutrient availability which impacts S. latissima’s biochemical composition thus, protein percentage (Slegers et al., 2021). Moreover, there is a lack in understanding of how different S. latissima ecotypes respond to environmental changes, which makes quantifying protein content for the species across a large geographical range inexact (Broch et al., 2019). Additionally, contradicting estimations could originate from the different nitrogen-to-protein conversion factors that can be relied on for total protein content determination, which can result in an under or over estimation (Bak et al., 2019). Furthermore, some studies use different methods altogether such as a quantitative amino acid analysis (Bak et al., 2019).

The protein composition of S. latissima cultured in the UK, Norway and North Sea area has been valued at ∼10% (Nielsen et al., 2020; Monteiro et al., 2020; Marinho et al., 2015a) if deployed in autumn and harvested in spring (March – May) (Nielsen et al., 2020; Marinho et al., 2015a). Based on the mean DW biomass production of 21t per ha\(^{-1}\) (table 3, figure 5), this would imply that a 1ha and 1km\(^2\) S. latissima farm in the North Sea could annually (every cultivation cycle) produce 2.1t and 210t of DW protein, respectively. For comparison purposes, when related to the UK’s most cultivated arable crop, wheat, which is ∼13% protein, S. latissima’s protein content is 3% lower. However, per hectare S. latissima cultivation would produce almost double the volume of protein (2.1t DW protein ha\(^{-1}\)) than wheat (1.1t DW protein ha\(^{-1}\)) due to its high biomass yield (table 3, figure 5). Although, in comparison to the protein yielded from higher trophic levels, on the basis that in the UK there is capacity for 2500 free-range chickens per ha\(^{-1}\) (DEFRA, 2019), ∼5.5 tonnes of protein per ha\(^{-1}\) per year can be produced from chicken eggs (6g protein per egg) (USDA, 2019). This value is ∼2.6\(^{*}\) (times) higher than potential S. latissima yields. However, food production from higher trophic levels requires more resources and is usually a bigger burden on the environment (Notarnicola et al., 2017; Smil, 2014; Reijnders et al., 2003; Smil, 2002).

To put S. latissima’s yield predictions (table 3) into perspective, roughly every 12,000ha (120km\(^2\)) (figure 6) would supply 1% of the UK’s population (670,000 people) (Office for National Statistics, 2021) with their yearly protein demand.
(~25,400t of protein) when using the most recent (2017) daily per capita protein consumption prediction of 104g (figure 1) (FAO, 2018). However, using the highest hypothetical *S. latissima* DW yield (57.5t ha$^{-1}$) (table 3) and protein content (26%) predictions (Pereira, 2016) that are based on growth under optimum conditions (equivalent to a protein yield of ~15t per ha), this would reduce the 12,000ha area required to ~1690ha (16.9km2).

![Figure 5: The mean dry weight yield in tonnes per hectare (0.01Km2) per year for *Saccharina latissima* grown across different geographical regions (using findings from table 3), in comparison to some of the UK’s most cultivated arable crops. The error bar is at a 99.9% confidence level. Values for wheat, oats and oilseed rape are a five-year (2015 – 2020) average of UK yield data. Data source (DEFRA, 2020).](image)

From a different evaluation viewpoint, if the protein yielded by North Sea *S. latissima* cultivation were to supply 5% of the UK’s population (3.35 million people) (Office for National Statistics, 2021) with their current protein demand (104g per day (figure 1), 10,452t per month) (FAO, 2018) for one month (30 days), then using the average protein yield (2.1t ha$^{-1}$) and content (10%) predictions, approximately 5000ha (50km2) would have to be utilised. Figure 6 illustrates the area required if the monthly protein demand from 5% of the population were to be met by *S. latissima* farming. Marine Scotland (2017) has defined a small-medium farm as ≤ 0-50 x 200m seaweed cultivation lines, and with 1.5m line spacing 50 lines would cover 1.5ha (0.015km2). This means that if the demand were to be met by a series of small-medium size *S. latissima* farms (illustrated in figure 6) 3333 cultivation sites would be required.
It is important to know that this study does not suggest the implication of 3333* 1.5ha macroalgae farms. Rather, these statistics and figure 6 have been used to demonstrate the scale of cultivation in relation to the significance of potential yields.

Amino acid profile and quality
The essential amino acids to total amino acid (EAA/TAA) ratio is used to assess the quality of protein within food for human consumption (Bleakley et al., 2017; Černá, 2011). A study in the Faroe Islands found that essential amino acids that humans cannot self-synthesise for example, lysine which is a valuable EAA within the protein economy (Leinonen et al., 2019), have been found to make up >50% of the amino acids in *S. latissima* when harvested in March (Bak et al., 2019). A food with an EAA score of >100% means that the quantity of EAA’s exceeds ratio requirements (mg EAA/g protein) for 3 –10-year-olds (WHO, 2007), and findings from Bak et al., (2019) show that *S. latissima* had a score of 106% (when harvested in March), indicating that that the protein content in *S. latissima* is high quality (WHO, 2007). Furthermore, Bak et al., (2019) found that regardless of total protein percentage the ratio of
different amino acids in *S. latissima* does not significantly deviate between cultivation depth and exposed or sheltered cultivation sites.

Environmental interactions
The rationale behind this project was the unprecedented need for the sustainable production of resources. Both positive and negative environmental modifications can be correlated to macroalgal cultivation (Xiao et al., 2021; Seghetta et al., 2016). However, if appropriate measures are put in place *S. latissima* can be sustainably cultivated (Campbell et al., 2019). Furthermore, sustainable *S. latissima* aquaculture and the ecosystem services that it yields could have socio-economic benefits (Visch et al., 2020; Wood et al., 2017), which would help the UK to reach 2030 goals such as those set by the United Nations (UN, 2020) (figure 7).

![Four of the United Nations targets for the 2030 agenda on sustainable development](image)

Target 2:
Zero hunger

“End hunger, achieve food security and improved nutrition and promote sustainable agriculture.”

- Yields biomass that can be used as a food source (Holdt and Kraan, 2011).
- Contains essential micronutrients for human wellbeing (Aakre et al., 2021)

Target 12:
Responsible consumption and production

“Ensure sustainable consumption and production patterns.”

- No fresh water, land, or fertiliser to produce biomass (Stanley et al., 2019) for:
 - Cosmetics and pharmaceuticals (Smit, 2004). Food, feed and fertilizers (Schlarb-Ridley, 2013). Biofuels and bio-plastics (Fasahati et al., 2015).

Target 13:
Climate action

“Take urgent action to combat climate change and its impacts.”

- Uptakes CO₂ (Yarish et al., 2017)
- Buffers ocean acidification (Xiao et al., 2021).
- Potential to be a carbon-neutral food source (Krause-Jensen and Duarte, 2016).

Target 14:
Life below water

“Conserve and sustainably use the oceans, seas and marine resources for sustainable development.”

- Creates habitats (Wood et al., 2017)
- Provides ecosystem services (Campbell et al., 2019) e.g. mitigates eutrophication (Visch et al., 2020) and improves biodiversity which in turn may increase fish stock (Hiddink et al., 2008)

Figure 7: The United Nations sustainable development goals and how seaweed farming could help to reach these targets. Target quotations are credit of the United Nations (2020).
This may contribute towards an assortment of different solutions that together might help ease the rate of climate change whilst still allowing humanity to develop (Yarish et al., 2017; Duarte et al., 2017).

Conclusion
Decision-makers will have an essential role in tackling challenges related to the growing human population and the subsequent snowballing increase in food supply demands, which present complicated sustainability challenges. However, this study’s Boolean modelling has identified the whereabouts of ~2.05 million hectares (~20,500km²) suitable for S. latissima cultivation absent of environmental, technical, and planning constraints, within the highly utilised English North Sea area. This is significant as sections of this identified area could be used to produce a currently underexploited alternative food source. Furthermore, if properly controlled this production would efficiently and sustainably utilise the ocean's resources to contribute towards meeting the unprecedented rise in resource demands.

Upon analysis, the Boolean feasible areas have capacity to produce large quantities of S. latissima biomass that could make a meaningful contribution to the UK’s protein supply. However, there are many predictions for S. latissima’s protein content at the lower end of values when compared to other UK farmed foods, and the protein percentage of S. latissima within the identified Boolean areas remains uncertain. Therefore, at present, prospects for S. latissima solely as a source of protein remain very limited. Consequently, the cultivation of North Sea S. latissima currently should not be regarded as a potential viable protein supply but, rather as an alternative food source which has a high-quality amino acid profile, contains bioactive compounds and essential minerals that can contribute towards overall human wellbeing.

Future work
Boolean approach
As the Boolean model values each criterion with equivalent importance, outcomes presume that all Boolean areas are equally suitable for farm site selection. Therefore, it is recommended that future work investigates this report’s Boolean areas using a suitability index weighted overlay, as this more detailed approach will be able to distinguish between adequate and highly optimum sites, which will help strengthen site selection decision-making.

Quantifying yield expectation
Examining existing literature indicated that S. latissima’s potential protein yield is subject to surrounding environmental conditions thus, predictions have large variability. Therefore, future work within trial sites is required to evaluate the site-specific feasibility of an S. latissima farm to facilitate high protein yields. This could be achieved through water quality surveys. For example, by examining nitrogen concentrations the growth rate and protein percentage of S. latissima will have an increased confidence level.

Acknowledgements
I would like to thank my research advisor Dr Gillian Glegg, academic tutor Dr. Jill Schwarz and the journal editor Dr Jason Truscott, at the University of Plymouth for their guidance throughout this project. Furthermore, I would like to thank the ArcGIS-compatible data sources for making their datasets freely accessible which ultimately
provided the knowledge required to make meeting this report's research aim possible.

References

EMODnet. (2018). North Sea munition dump data source. Online. Available at: https://services6.arcgis.com/IrCHt1arNMmYtNtb/arcgis/rest/services/North_Sea_AO_L/FeatureServer/4

Esri. (2017). UK offshore wind energy site data source. Polygon layer. Katie Education. Online. Available at: https://services.arcgis.com/XSeYKQzfXnEgju9o/arcgis/rest/services/UK_Offshore_W ind_Energy/FeatureServer/1

Global Offshore Wind Farm Database. (2019). Offshore wind farm development zone data source. Online. Available at: https://map.4coffshore.com/offshorewind/

JNCC. (2022). UK Marine Protected areas. Online. Available at: https://jncc.gov.uk/mpa-mapper/

Leeuwarden, V. (2021). Oil and gas field data source. Online. Available at: https://services6.arcgis.com/IrCHt1arNMmYtNtb/arcgis/rest/services/oil_and_gas_field_UK/FeatureServer

National Geospatial Intelligence Agency. (2018). Nautical publications. World port index dataset. Online. Available at: https://msi.nga.mil/Publications/WPI. ArcGIS Point layer by spk578. Online. Available at: https://services9.arcgis.com/j1CY4yzWfwptbTWN/arcgis/rest/services/WorldPortIndex_WFL1/FeatureServer/0

Seafish, 2021. ArcGIS layer UK_Territorial_Limit. Online. Available at: https://services6.arcgis.com/2uALHsfqgyRHCgRi/arcgis/rest/services/UK_Territorial_Limit_20210101/FeatureServer/0

The Crown Estate. (2021). UK offshore wind farm cable agreement data source. Online. Available at: https://services2.arcgis.com/PZklK9Q45mFfMfZs/arcgis/rest/services/WindCable_EngWalNI_TheCrownEstate/FeatureServer

The Crown Estate. (2022). Licensed marine aggregate extraction site, data source. Online. Available at: https://services2.arcgis.com/PZklK9Q45mFfMfZs/arcgis/rest/services/MineralsMiningSite_EngWalNI_TheCrownEstate/FeatureServer

UK Hydrographic Office, 2018. UK EEZ Feature Layer. Online. Available at: https://services.arcgis.com/JJzESW51TqeY9uat/arcgis/rest/services/UK_EEZ_2013/FeatureServer/0

Appendices are provided separately as supplementary files (please see additional downloads for this paper).