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Abstract - This paper presents an analytical study on the dynamic stability of carbon nanotubes 

(CNTs) reinforced functionally graded composite beams when subjected to axial excitation 

loading. The composite beams are functionally graded using a I-type CNTs reinforcement. The 

section properties of the non-uniform functionally graded composite beams are assessed using 

Halpin–Tsai model. The analysis of dynamic stability of the composite beams is performed by 

using Bolotin’s method. Analytical expressions of determining free vibration frequency, 

critical buckling load, and excitation frequency of the non-uniform functionally graded 

composite beams are derived, in which both the shear deformation and rotary inertia effects are 

considered. The study demonstrates that the dynamic stability of the beam can be improved 

significantly when it is functionally graded using the I-type CNTs reinforcement. 

 

Keywords: Carbon nanotubes; Composite beams; Functionally graded; Excitation loading; 

Dynamic instability. 

 
 

1. Introduction 

 

Carbon nanotubes (CNTs) have received tremendous attention since they were discovered in 

1991 and become popular in recent years. CNTs have excellent mechanical, thermal and 

electrical properties [1,2] and have great potential for applications in many scientific and 

technological fields, especially for use as composite fillers in polymers to improve the 

mechanical, thermal, and electrical properties of resulting composites. Examples include 

CNTs-smart sensors, CTNs-functionally graded (FG) composites, CNTs strengthened 

structural composites [3], etc. An excellent literature review has been provided by Coleman et 

al. [4] on the mechanical properties of CNTs-polymer composites.  

 

In recent years, CNTs have been applied to structures to provide structural health monitoring 

functions. In order to effectively and efficiently use CNTs in a structure, often, CTNs are first 

mixed with polymer to produce a CNTs-polymer composite, and then the composite is 

incorporated into the structure to monitor the overall structural behaviors. To implement the 

functions of CNTs, one has to understand not only the properties of CNTs-filled composite but 

also the interactions between the CNTs-filled composite and its monitored structure. Extensive 

research works have been carried out since CNTs were discovered. For instance, Chakraborty 
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et al. [5] developed a beam finite element for the analysis of FG materials. Li [6] proposed a 

unified approach for analyzing the static and dynamic behaviors of FG beams. Şimşek [7] used 

Ritz method to analyze the static behavior of FG beams subjected to uniformly distributed 

loading. Huang and Li [8] presented the free vibration analysis of axially FG beams with non-

uniform cross-section. Alshorbagy et al. [9] analyzed the free vibration problem of FG beams 

by using finite element method. Lezgy-Nazargah et al. [10] presented a refined high-order 

theory for bending and vibration analyses of laminated composite beams. Rokni et al. [11,12] 

demonstrated the improvement of dynamic properties of composite beams reinforced by CNTs. 

Ansari et al. [13] performed the nonlinear forced vibration analysis of FG composite beams 

reinforced by CNTs. Filippi et al. [14] provided a comparable study on the static analysis of 

FG beams by using different theories and finite element method. Lezgy-Nazargah [15] and El-

Ashmawy et al. [16] investigated the thermo-mechanical behaviors of FG beams. Shafiei and 

Kazemi [17] presented the buckling analysis of bi-dimensional FG porous tapered nano- and 

micro-scale beams. Yang et al. [18] conducted the bending, buckling and vibration analyses of 

bi-directional FG nano-scale beams. Lal and Markad [19] studied the deflection and stress 

behavior of multi-walled CNTs reinforced laminated composite beams. Ranjbar and Feli [20] 

conducted the low velocity impact analysis of axially FG CNTs-reinforced beams. Zheng et al. 

[21] reported the size dependent nonlinear free vibration of axially FG tapered micro-beams 

using finite element method. Aubad et al. [22] presented the modal analysis and transient 

response of axially FG beams using finite element method. Sahmani and Safaei [23], Tang et 

al. [24], Heidari and Arvin [25] investigated the nonlinear free vibrations of FG CNTs-

reinforced beams. Chen et al. [26] presented the static and dynamic analyses of post-buckling 

of bi-directional FG micro-beams. Lal and Markad [27] presented the thermo-mechanical post-

buckling analysis of CNTs-reinforced laminated beams on elastic foundation. Sahmani and 

Safaei [28] examined the influence of homogenization models on the size-dependent nonlinear 

bending and post-buckling of bi-directional FG micro- and nano-beams. Bourada et al. [29] 

performed the stability and dynamic analyses of CNTs-reinforced concrete beams on elastic 

foundation. El-Ashmawy and Xu [30] presented a longitudinal modeling and properties 

tailoring of FG CNTs-reinforced composite beams. Yang et al. [31] investigated the nonlinear 

flexural behavior of temperature dependent FG CNTs-reinforced laminated beams with 

negative Poisson’s ratio resting on the Pasternak foundation. Khaniki and Ghayesh [32] 

examined the dynamic characteristics of axially FG CNT-strengthened deformable beams. Hou 

et al. [33] reported a computational model for the static analysis of axially FG micro-cylindrical 

imperfect beam. Shariati et al. [34] presented a study on the stability and dynamics of 

viscoelastic moving Rayleigh beams with an asymmetrical distribution of material parameters. 

Apart from the work on CNTs-reinforced FG composite beams mentioned above, studies were 

also reported on the vibration and buckling of graphene nanoplatelet-reinforced composite 

disks and cylindrical shells [35,36].  

 

The aforementioned literature survey shows that there have been extensive studies on the 

CNTs-reinforced FG composite beams. The research covers the bending, buckling, free 

vibration and dynamic response analyses of the beams with various different FG distributions 

of CNTs, either in the longitudinal direction or on the cross-section of the beams. However, 

limited work exists on the interaction of the buckling and vibration of CNTs-reinforced FG 

composite beams when subjected to axial excitation loading. In this paper, a study is carried 

out on the dynamic instability of CNTs-reinforced FG composite beams when subjected to 

axial excitation loading. Unlike the existing studies in which the V-, O-, X- and -types of FG 

distributions of CNTs on the cross-section of the beam were used [37,38], the present study 

uses an I-type FG distribution, which comes from the idea of the traditional I-section steel 



3 

 

beams, which can provide better performance in terms of both the bending and shear behaviors. 

By assuming the instability modes, the kinetic energy and strain energy of the composite beams 

and the loss of the potential of the axially compressive load are evaluated, from which the 

generalized equation of motion of the CNTs-reinforced FG composite beams is derived. The 

analysis of the dynamic instability of the composite beams is performed by using Bolotin 

method [39,40,41,42,43]. Numerical examples are provided for illustrating the dynamic 

instability behavior of the CNTs-reinforced FG composite beams when subjected to axial 

excitation loading. The obtained results elucidate how the composite beam can be reinforced 

non-uniformly by using CNTs in order to improve its dynamic stability. 

 

2. Mechanical properties of CNTs-reinforced composite beams 

 

Consider a composite beam made from polymer matrix material reinforced with CNTs. In 

literature various different FG distributions of CNTs such as V-, O-, X- and -types on the 

cross-section of the beam have been proposed [37,38]. However, for a structural element, the 

beam with an I-section would be desirable because of its effectiveness in terms of the bending, 

which is resisted mainly by the two flanges, and shear, which is resisted largely by the web of 

the I-section beam. In order to achieve the I-section-type properties in a composite beam with 

rectangular cross-section, the "I"-type FG distribution of CNTs (see Fig.1) is used in the present 

study. The purpose of using such an I-type distribution of CNTs is for improving both the 

bending and shear performance of the composite beam. More importantly, by adjusting the 

volume fractions of CNTs used in the two outer layers and core layer of the beam one can 

optimize the properties of the FG composite beams. Assume the volume fraction of CNTs is 

Vc1 in the top and bottom layers and Vc2 in the middle part of the beam, respectively. The 

overall volume fraction of CNTs in the beam thus can be expressed as follows, 

𝑉𝑐 =
2𝑡𝑏𝑉𝑐1+(ℎ−2𝑡)𝑏𝑉𝑐2

ℎ𝑏
          (1) 

where Vc is the overall volume fraction of CNTs in the beam, t is the thickness of the top or 

bottom layer of the beam, b is the width of the beam, and h is the depth of the beam. Vc1 and 

Vc2 can be adjusted in terms of required functions. According to Halpin–Tsai model [3,44], the 

Young’s modulus, Poisson’s ratio, shear modulus and density of the CNTs-reinforced 

composite beams are the function of y-coordinate and can be expressed as follows, 

 

 
Fig.1. Length and cross-section dimensions of CNTs-reinforced composite beam. 

 

 

For zone: y>(h/2–t) or y<-(h/2–t) 
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𝐸𝑒1 =
3

8
(

1+2𝜆𝜂𝐿𝑉𝑐1

1−𝜂𝐿𝑉𝑐1
) 𝐸𝑚 +

5

8
(

1+2𝜂𝑇𝑉𝑐1

1−𝜂𝑇𝑉𝑐1
) 𝐸𝑚       (2) 

𝜈𝑒1 = 𝑉𝑐1𝜈𝑐 + (1 − 𝑉𝑐1)𝜈𝑚         (3) 

𝐺𝑒1 =
𝐸𝑒1

2(1+𝜈𝑒1)
           (4) 

𝜌𝑒1 = 𝑉𝑐1𝜌𝑐 + (1 − 𝑉𝑐1)𝜌𝑚         (5) 

 

For zone: -(h/2-t)≤y≤(h/2-t) 

𝐸𝑒2 =
3

8
(

1+2𝜆𝜂𝐿𝑉𝑐2

1−𝜂𝐿𝑉𝑐2
) 𝐸𝑚 +

5

8
(

1+2𝜂𝑇𝑉𝑐2

1−𝜂𝑇𝑉𝑐2
) 𝐸𝑚       (6) 

𝜈𝑒2 = 𝑉𝑐2𝜈𝑐 + (1 − 𝑉𝑐2)𝜈𝑚         (7) 

𝐺𝑒2 =
𝐸𝑒2

2(1+𝜈𝑒2)
           (8) 

𝜌𝑒2 = 𝑉𝑐2𝜌𝑐 + (1 − 𝑉𝑐2)𝜌𝑚         (9) 

 

in which, 

𝜂𝐿 =
𝐸𝑐−𝐸𝑚

𝐸𝑐+2𝜆𝐸𝑚
           (10) 

𝜂𝑇 =
𝐸𝑐−𝐸𝑚

𝐸𝑐+2𝐸𝑚
           (11) 

where Ee1, e1, Ge1 and e1 are the effective Young’s modulus, effective Poisson’s ratio, 

effective shear modulus and effective density in the top and bottom layers of the beam, Ee2, 

e2, Ge2 and e2 are the effective Young’s modulus, effective Poisson’s ratio, effective shear 

modulus and effective density in the middle part of the beam, Ec, c and c are the Young’s 

modulus, Poisson’s ratio and density of the CNTs, Em, m and m are the Young’s modulus,  

Poisson’s ratio and density of the polymer matrix material, and  is the aspect ratio of CNTs 

fibers. 

 

3. Vibration, buckling and dynamic instability analyses of CNTs-reinforced composite 

beams 

 

Assume that the CNTs-reinforced composite beam shown in Fig.1 can be treated as the 

Timoshenko beam [25,45], in which two independent displacements are the transverse 

displacement w(x,t) and angle of rotation of the cross-section (x,t). According to the 

Timoshenko beam theory where both the shear deformation and rotary inertia effects are 

considered, the kinetic energy of the composite beam at any time t can be expressed as follows, 

𝑇(𝑡) =
1

2
(𝜌𝐴)𝑒𝑞 ∫ (

𝜕𝑤

𝜕𝑡
)

2

𝑑𝑥 +
1

2
(𝜌𝐼)𝑒𝑞 ∫ (

𝜕𝜙

𝜕𝑡
)

2

𝑑𝑥
𝑙

𝑜

𝑙

𝑜
     (12) 

where T(t) is the kinetic energy of the beam, l is the beam length, (A)eq and(I)eq are the mass 

and moment of inertia per-unit length, respectively, which can be calculated as follows, 

(𝜌𝐴)𝑒𝑞 = 2𝜌𝑒1𝑏𝑡 + 𝜌𝑒2𝑏(ℎ − 2𝑡)        (13) 

(𝜌𝐼)𝑒𝑞 = 2𝜌𝑒1𝑏𝑡 (
ℎ−𝑡

2
)

2

+ 2𝜌𝑒1
𝑏𝑡3

12
+ 𝜌𝑒2

𝑏(ℎ−2𝑡)3

12
      (14) 
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The strain energy of the composite beam at any time t can be expressed as follows, 

𝑈(𝑡) =
1

2
(𝐸𝐼)𝑒𝑞 ∫ (

𝜕𝜙

𝜕𝑥
)

2

𝑑𝑥 +
𝑘𝑠

2
(𝐺𝐴)𝑒𝑞 ∫ (

𝜕𝑤

𝜕𝑥
− 𝜙)

2

𝑑𝑥
𝑙

𝑜

𝑙

𝑜
     (15) 

where U(t) is the strain energy of the beam, ks =1.2 is the shear factor, (EI)eq and (GA)eq are 

the flexural and shear rigidities of the beam, respectively, which can be calculated as follows,  

(𝐸𝐼)𝑒𝑞 = 2𝐸𝑒1𝑏𝑡 (
ℎ−𝑡

2
)

2

+ 2𝐸𝑒1
𝑏𝑡3

12
+ 𝐸𝑒2

𝑏(ℎ−2𝑡)3

12
      (16) 

(𝐺𝐴)𝑒𝑞 = 3𝑏 ∫ 𝐺𝑒2 [1 − (
2𝑦

ℎ
)

2

]

ℎ
2

−𝑡

𝑜

𝑑𝑦 + 3𝑏 ∫ 𝐺𝑒1 [1 − (
2𝑦

ℎ
)

2

]

ℎ
2

ℎ
2

−𝑡

𝑑𝑦 

 = 𝑏ℎ [𝐺𝑒1 −
3

2
(1 −

2𝑡

ℎ
) (𝐺𝑒1 − 𝐺𝑒2) +

1

2
(1 −

2𝑡

ℎ
)

3
(𝐺𝑒1 − 𝐺𝑒2)]   (17) 

 

In Eq.(17) the shear rigidity is calculated based on the parabolic distribution assumption of 

shear strain along the thickness direction. The loss of potential of the externally applied axial 

load P(t) at any time t can be expressed as follows, 

𝑊(𝑡) =
1

2
𝑃(𝑡) ∫ (

𝜕𝑤

𝜕𝑥
)

2

𝑑𝑥
𝑙

𝑜
         (18) 

where P(t) is the externally applied axial load. For a simply supported beam, the displacement 

functions w(x,t) and (x,t) satisfying the boundary conditions can be approximately assumed 

as follows, 

𝑤(𝑥, 𝑡) = 𝐶1(𝑡)sin
𝜋𝑥

𝑙
          (19) 

𝜙(𝑥, 𝑡) = 𝐶2(𝑡)cos
𝜋𝑥

𝑙
          (20) 

where C1(t) and C2(t) are the functions of time which are to be determined lately. Substituting 

Eqs.(19) and (20) into Eqs.(12), (15) and (18), it yields, 

𝑇(𝑡) =
𝑙

4
(𝜌𝐴)𝑒𝑞𝐶̇1

2 +
𝑙

4
(𝜌𝐼)𝑒𝑞𝐶̇2

2        (21) 

𝑈(𝑡) =
𝑙

4
(𝐸𝐼)𝑒𝑞 (

𝜋

𝑙
)

2

𝐶2
2 +

𝑘𝑠𝑙

4
(𝐺𝐴)𝑒𝑞 (

𝜋

𝑙
𝐶1 − 𝐶2)

2

      (22) 

𝑊(𝑡) =
𝑙

4
𝑃(𝑡) (

𝜋

𝑙
)

2

𝐶1
2         (23) 

By applying Hamilton’s principle, the following equations of motion of the beam can be 

obtained, 

(𝜌𝐴)𝑒𝑞𝐶̈1 +
𝜋

𝑙
𝑘𝑠(𝐺𝐴)𝑒𝑞 (

𝜋

𝑙
𝐶1 − 𝐶2) − 𝑃(𝑡) (

𝜋

𝑙
)

2

𝐶1 = 0     (24) 

(𝜌𝐼)𝑒𝑞𝐶̈2 + (𝐸𝐼)𝑒𝑞 (
𝜋

𝑙
)

2

𝐶2 − 𝑘𝑠(𝐺𝐴)𝑒𝑞 (
𝜋

𝑙
𝐶1 − 𝐶2) = 0     (25) 

 

It is obvious that if there is no external load, that is P(t)=0, Eqs.(24) and (25) reduce to the free 

vibration equations of two degrees of freedom, from which the natural frequencies of the beam 

can be obtained by solving the following eigenvalue equations, 
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‖
−(𝜌𝐴)𝑒𝑞𝜔2 + 𝑘𝑠(𝐺𝐴)𝑒𝑞 (

𝜋

𝑙
)

2

−𝑘𝑠(𝐺𝐴)𝑒𝑞 (
𝜋

𝑙
)

−𝑘𝑠(𝐺𝐴)𝑒𝑞 (
𝜋

𝑙
) −(𝜌𝐼)𝑒𝑞𝜔2 + (𝐸𝐼)𝑒𝑞 (

𝜋

𝑙
)

2

+ 𝑘𝑠(𝐺𝐴)𝑒𝑞

‖ = 0  (26) 

where  is the natural frequency of the transverse vibration of the beam. The smaller frequency 

of Eq.(26) is given as follows,       

𝜔2 =
1

2
[(

𝑘𝑠(𝐺𝐴)𝑒𝑞

(𝜌𝐴)𝑒𝑞
(

𝜋

𝑙
)

2

+
(𝐸𝐼)𝑒𝑞

(𝜌𝐼)𝑒𝑞
(

𝜋

𝑙
)

2

+
𝑘𝑠(𝐺𝐴)𝑒𝑞

(𝜌𝐼)𝑒𝑞
) −

                      √(
𝑘𝑠(𝐺𝐴)𝑒𝑞

(𝜌𝐴)𝑒𝑞
(

𝜋

𝑙
)

2

+
(𝐸𝐼)𝑒𝑞

(𝜌𝐼)𝑒𝑞
(

𝜋

𝑙
)

2

+
𝑘𝑠(𝐺𝐴)𝑒𝑞

(𝜌𝐼)𝑒𝑞
)

2

−
4𝑘𝑠(𝐺𝐴)𝑒𝑞(𝐸𝐼)𝑒𝑞

(𝜌𝐴)𝑒𝑞(𝜌𝐼)𝑒𝑞
(

𝜋

𝑙
)

4

  ]  (27) 

It is observable from Eq.(27) that if the shear deformation is ignored, that is (GA)eq→∞, the 

frequency given by Eq.(27) reduces to the fundamental frequency of the simply supported 

Euler-Bernoulli beam.  

 

If the external load is applied statically, then Eqs.(24) and (25) reduce to the static stability 

equations of the beam at bifurcation equilibrium state, from which the critical buckling load 

can be obtained by solving the following eigenvalue equation, 

‖
𝑘𝑠(𝐺𝐴)𝑒𝑞 (

𝜋

𝑙
)

2

− 𝑃𝑐𝑟 (
𝜋

𝑙
)

2

−𝑘𝑠(𝐺𝐴)𝑒𝑞 (
𝜋

𝑙
)

−𝑘𝑠(𝐺𝐴)𝑒𝑞 (
𝜋

𝑙
) (𝐸𝐼)𝑒𝑞 (

𝜋

𝑙
)

2

+ 𝑘𝑠(𝐺𝐴)𝑒𝑞

‖ = 0    (28) 

where Pcr is the critical buckling load of the beam and can be expressed as follows, 

𝑃𝑐𝑟 =
𝜋2(𝐸𝐼)𝑒𝑞

𝑙2

𝑘𝑠(𝐺𝐴)𝑒𝑞𝑙2

𝑘𝑠(𝐺𝐴)𝑒𝑞𝑙2+𝜋2(𝐸𝐼)𝑒𝑞
        (29) 

Again, it can be seen from Eq.(29) that if the shear deformation is ignored, i.e. (GA)eq→∞, the 

critical buckling load given by Eq.(29) reduces to the classical Euler buckling load. 

 

If the external load is a periodic one, that is P(t) = cos(t), where is the amplitude and is 

the excitation frequency of the dynamic load, the solution of Eq.(24) and (25) can be expressed 

as follows,  

{
𝐶1(𝑡)
𝐶2(𝑡)

} = ∑ ({
𝑎1𝑘

𝑎2𝑘
} sin

𝑘Ω𝑡

2
+ {

𝑏1𝑘

𝑏2𝑘
} cos

𝑘Ω𝑡

2
)𝑘=1,2,3…       (30) 

where a1k, a2k, b1k, and b2k (k=1,2,3,…) are the coefficients of the solution. It is known that [39-

43], for a given amplitude of the load the dynamic instability regions of the dynamic system 

described by Eqs.(24) and (25) can be determined by examining the periodic solutions with the 

periods of T=2 and 2T=4. The solution with the period of 2T is of particular 

importance, representing the primary instability region of the system, which can be expressed 

using the form of trigonometric series given by Eq.(30). Substituting Eq.(30) into (24) and (25) 

and letting the coefficients of the series associated with sin(t/2) and cos(t/2) be zero, it 

yields, 

‖
𝑘𝑠(𝐺𝐴)𝑒𝑞 (

𝜋

𝑙
)

2

±
𝛼

2
(

𝜋

𝑙
)

2

− (𝜌𝐴)𝑒𝑞
Ω2

4
−𝑘𝑠(𝐺𝐴)𝑒𝑞 (

𝜋

𝑙
)

−𝑘𝑠(𝐺𝐴)𝑒𝑞 (
𝜋

𝑙
) (𝐸𝐼)𝑒𝑞 (

𝜋

𝑙
)

2

+ 𝑘𝑠(𝐺𝐴)𝑒𝑞 − (𝜌𝐼)𝑒𝑞
Ω2

4

‖ = 0 (31) 
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Eq.(31) leads to the following expression for the excitation frequency of the dynamic load, 

Ω2

4
=

1

2
(

𝜋

𝑙
)

2

[(
𝑘𝑠(𝐺𝐴)𝑒𝑞±

𝛼

2

(𝜌𝐴)𝑒𝑞
+

(𝐸𝐼)𝑒𝑞

(𝜌𝐼)𝑒𝑞
+

𝑘𝑠(𝐺𝐴)𝑒𝑞𝑙2

𝜋2(𝜌𝐼)𝑒𝑞
) −

                       √(
𝑘𝑠(𝐺𝐴)𝑒𝑞±

𝛼

2

(𝜌𝐴)𝑒𝑞
+

(𝐸𝐼)𝑒𝑞

(𝜌𝐼)𝑒𝑞
+

𝑘𝑠(𝐺𝐴)𝑒𝑞𝑙2

𝜋2(𝜌𝐼)𝑒𝑞
)

2

−
4(𝑘𝑠(𝐺𝐴)𝑒𝑞±

𝛼

2
)(𝐸𝐼)𝑒𝑞±2𝛼𝑘𝑠(𝐺𝐴)𝑒𝑞(

𝑙

𝜋
)

2

(𝜌𝐴)𝑒𝑞(𝜌𝐼)𝑒𝑞
] (32) 

In terms of the format Eq.(32) is similar to Eq.(27), but they have two differences. One is the 

frequency. The frequency  in Eq.(27) is the natural frequency of the beam; whereas the 

frequency  in Eq.(32) represents the excitation frequency of the dynamic load. The other is 

the stiffness. The stiffness in Eq.(31) is modified by the externally applied axial dynamic load.  

Note that there is a symbol “±” in Eqs.(31) and (32) representing two separate operations. For 

“+” operation the stiffness is strengthened; whereas for “-” operation the stiffness is weakened. 

Thus, for a given value of , one can calculate two frequencies of , one corresponds to “+” 

operation and the other is related to “-” operation, which give the boundary of dynamic 

instability region of the beam when it is subjected to an axial excitation loading. The dynamic 

instability zone predicted by Eq.(32) can be applied to any Timoshenko beams. However, since 

the particular definitions of the section properties given by Eqs.(13), (14), (16) and (17), 

Eq.(32) is more general and can be used to examine the effect of CTNs FG dispersion on the 

dynamic instability of the reinforced composite beams.    

 

4. Numerical examples 

 

As the numerical examples, here a CNTs-reinforced-polymer composite beam is analyzed. The 

dimensions of the composite beam analyzed are: beam width b=20 mm, beam depth h=60 mm, 

and beam top/bottom layer thickness t=6 mm. The beam length is taken from l=3h to l=10h for 

the free vibration and buckling analyses, and l=4h and l=8h for the dynamic instability 

analyses. The mechanical properties of CNTs and polymer materials used are given in Table 

1, which are taken from literature [12]. For each type of analyses, four different cases are 

considered. Case 1 is the non-reinforced-polymer beam (Vc1=Vc2=Vc=0) which serves as the 

reference beam for the purpose of comparison; Case 2 is the uniformly reinforced CNTs-

polymer composite beam (that is Vc1=Vc2=Vc); Case 3 is the I-type CNTs-reinforced FG 

composite beam with Vc1=5Vc2; Case 4 is also the I-shape CNTs-reinforced FG composite 

beam with Vc1=10Vc2. Note that since the total CNTs used in the beam for cases 2, 3 and 4 are 

identical, any increase in Vc1 means that there would be a decrease in Vc2, as determined by 

Eq.(1), provided that Vc2 is not less than the threshold volume fraction of the inclusions [46,47]. 

Physically, the larger of Vc1 (or the smaller of Vc2) implies that the equivalent beam has larger 

width of flanges or thinner thickness of the web.  

 

Table 1 Mechanical properties of polymer and CNTs 

Parameter Polymer matrix CNTs 

Young’s modulus (GPa) Em  = 1.90 Ec = 900 

Poisson’s ratio m = 0.340 c  = 0.280 

Density (kg/m3) m =1050  c = 2100 

Aspect ratio - 50 
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Fig.2 shows the variation of the natural frequency of the composite beams with the beam length 

for beams with two different overall volume fractions of CNTs, Vc=1.5% and Vc=5.0%, 

respectively. The results are obtained from the calculation of Eq.(27). It can be seen from the 

figure that the frequencies of the three composite beams are much greater than that of the 

reference beam, indicating that the use of small quantity of CNTs can significantly improve 

the vibration performance of the composite beams. The frequencies of the two I-shape CNTs-

reinforced FG composite beams are found to be higher than that of the uniformly reinforced 

CNTs-polymer composite beam, indicating that the use of I-shape FG distribution is more 

effective. The frequencies of the two I-shape CNTs-reinforced FG composite beams however 

do not have substantial difference, indicating that there is a limitation by increasing the volume 

fraction of CNTs in the two outer layers of the beams because of the required balance between 

the shear and flexural rigidities. Also, it can be observed by comparing the frequencies shown 

in Fig.2a and Fig.2b that, the more the CNTs used in the beam, the more increase in frequency 

can be achieved, which is also expected. 

 

 

 
(a) 
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(b) 

 

Fig.2. Effect of CNTs on fundamental frequency of CNTs-reinforced FG composite beams. 

(a) Vc=1.5% and (b) Vc=5.0% (o is the fundamental frequency of the beam with no CNTs at 

beam length l=3.1h).  

 

 

 
(a) 
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(b) 

 

Fig.3. Effect of CNTs on critical buckling load of CNT-reinforced FG composite beams. (a) 

Vc=1.5% and (b) Vc=5.0% (Pcro is the critical buckling load of the beam with no CNTs at 

beam length l=3.1h). 

 

 

 
(a) 
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(b) 

 

Fig.4. The dynamic instability zones of CNTs-reinforced FG composite beams. (a) Vc=1.5% 

and (b) Vc=5.0% (l=4h, o and Pcro are the fundamental frequency and critical buckling load 

of the beam with no CNTs).  

 

 

 

 
(a) 
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(b) 

 

Fig.5 The dynamic instability zones of CNTs-reinforced FG composite beams. (a) Vc=1.5% 

and (b) Vc=5.0% (l=8h, o and Pcro are the fundamental frequency and critical buckling load 

of the beam with no CNTs).  

 

Fig.3 shows the variation of the critical buckling load of the composite beams with the beam 

length for the two different overall volume fractions of CNTs. The results are obtained from 

the calculation of Eq.(29). Similar to the frequency results, the critical loads of the three 

composite beams are much greater than that of the reference beam, indicating that the use of 

CNTs can significantly increase the buckling resistance of the composite beam. The critical 

loads of the two I-shape CNTs-reinforced FG composite beams are found to be higher than that 

of the uniformly reinforced CNTs-polymer composite beam, indicating that the use of I-shape 

FG distribution is more effective in improving the buckling resistance of the beam. The 

difference in critical load between the two I-shape CNTs-reinforced FG composite beams is 

also found to be insignificant, indicating that the similar limitation exists if purely increasing 

the volume fraction of CNTs in the two outer layers of the beams. Finally, the comparison of 

critical loads shown in Fig.2a and Fig.2b illustrates that, the more CNTs used in the composite 

beam, the higher the critical load of the beam can be achieved. 

 

The dynamic instability of a structure occurs because of parametric resonance. The dynamic 

instability zones of a structure thus can be plotted based on the amplitude and excitation 

frequency of the externally applied dynamic load. Figs.4 and 5 show the dynamic instability 

zones of the composite beams at two different beam lengths (l/h=4 and l/h=8), each with two 

different overall volume fractions of CNTs (Vc=1.5% and Vc=5.0%,). The results are obtained 

from the calculation of Eq.(32).  

 

It can be seen from Fig.4a that the dynamic instability zones of the three composite beams are 

all smaller than that of the reference beam and they all move, to some extent, towards to high 

frequency side, indicating that the use of small quantity of CNTs can significantly improve the 
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dynamic stability of the composite beams. The dynamic instability zones of the two I-shape 

CNTs-reinforced FG composite beams are found to be moderately smaller than that of the 

uniformly reinforced CNTs-polymer composite beam and they also further move towards to 

high frequency side than the uniformly reinforced CNTs-polymer composite beam, indicating 

that the use of I-shape FG distribution is more effective in reducing the size of instability zone 

of the beam. The dynamic instability zones of the two I-shape CNTs-reinforced FG composite 

beams are found to be very similar, except that one with larger CNTs volume fraction in the 

two outer layers of the beam is shifted a little to the high frequency side. With the increase of 

the overall volume fractions of CNTs to Vc=5.0% (see Fig.4b), the difference between the four 

dynamic instability zones also growths, although their qualitative features remain unchanged. 

From the comparison of the results between Fig.4 and Fig.5, one can see the dynamic instability 

zones shown in the two figures are very similar although they have different beam lengths. The 

reason for that is because both the amplitude and excitation frequency of the dynamic load 

plotted in the figures have been normalized by using the fundamental frequency and critical 

buckling load of the beam with no CNTs, which eliminate the main effect of the beam length. 

 

The dynamic instability charts plotted in Figs.4 and 5 provide important information on the 

resonance of the FG composite beams. The charts illuminate the interaction between the 

amplitude and frequency of the axial excitation loading and describe how the resonance of the 

beams changes with them. The figures also show how to functionally grade the composite 

beams which can effectively reduce the resonance potential of the composite beams. In recent 

years FG composite materials have been widely used as the structural components to make 

sensors and biomedical implants. It is therefore very important to understand the dynamic 

behavior and instability feature of the components made by FG composite materials when they 

are working in a dynamic environment. 

 

5. Conclusions 

 

This paper has proposed a I-type CNTs-reinforced FG composite beams. By using Halpin–Tsai 

model the section properties of the FG composite beams have been assessed and the analyses 

of the free vibration, buckling and dynamic instability of the FG composite beams when 

subjected to axial excitation loading have also been carried out. Analytical expressions of 

determining the free vibration frequency, critical buckling load, and excitation frequency of 

resonance of the FG composite beams have been derived. From the results obtained the 

following conclusions can be drawn: 

 

(1) The use of CNTs to reinforce and/or functionally grade polymer beam can significantly 

increase its frequency of transverse vibration and axially compressive buckling load and 

improve its dynamic stability when the beam is subjected to axial excitation loading. The more 

the CNTs are used in the beam the more improvement can be achieved. 

(2) It is more effective and more efficient to use I-shape distribution of CNTs to functionally 

grade the beam than the traditional use of uniform distribution of CNTs on the cross-section of 

the beam. It is demonstrated that both the fundamental frequency and critical buckling load of 

the I-shape distributed CNTs-reinforced FG composite beam are greater than those of the 

uniformly distributed CNTs reinforced FG composite beam.  

(3) The width of the dynamic instability zone of the I-shape CNTs-reinforced FG composite 

beam is smaller than that of the uniformly reinforced CNTs-polymer composite beam and 

corresponding zone position also shifts towards to high frequency side. However, no significant 

difference in their dynamic instability zones is found between the two I-shape CNTs reinforced 

FG composite beams. 
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(4) The improvement of CNTs reinforcement on the dynamic stability of composite beams will 

be different for beams of different lengths. However, when the dynamic instability zone is 

plotted using dimensionless frequency and dimensionless loading amplitude the main influence 

of the beam length on the plotted dynamic instability zone could be eliminated. 

(5) The resonance characteristics of the CNTs-reinforced FG composite beams can be 

significantly improved by the use of I-shape distribution of CNTs on the beam cross-section, 

which is demonstrated by not only the reduction of the width of the instability zone but also 

the shift of the instability zone from the low frequency side to the high frequency side.   
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