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Abstract 

Meningioma is cancer of the meninges, the protective lining of the brain and spinal cord. 
Currently meningioma is classified using WHO Grades (I-III) which is based on histological 
characteristics of the tumours. This approach can give inaccurate indication of tumour 
aggression and therefore an inappropriate treatment course is chosen. The aim of this study 
was to identify differentially expressed genes that may act as biomarkers to indicate tumour 
aggressiveness. A further aim was to infer and investigate the role of specific gene 
expression regulatory mechanisms within meningioma. Bioinformatic approaches for 
transcriptomic analysis were used to study microarray data of 62 meningioma tumour 
patients. Comparison of gene expression was carried out between the 3 WHO grades and 
between groups with different clinical rates of recurrence. Differential gene expression 
analysis was completed using online tools GEO2R and Network Analyst, enrichment 
analysis was performed using WebGestalt and X2KWeb was used to investigate 
transcription factor influence. Identified potential biomarkers of aggression include an 
upregulation of PTTG1, SRSF6, and FOXM1 and downregulation of LEPR and SFRP1. 
Furthermore, through enrichment analysis cell cycle, metabolic pathways and spliceosomes 
were identified to be overrepresented in the upregulated genes of both grade III and 
aggressive comparison groups. In conclusion this study identified potential genetic 
characteristics and the associated biological pathways and processes that are dysregulated 
in disease state. It also provides potential biomarkers of meningioma aggression for further 
functional validation.  
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Introduction 
Meningioma is a cancer of the meninges and accounts for up to 36% of all primary 
central nervous system (CNS) tumours and is the most common intracranial tumour 
(Louis et al, 2016). Meningiomas are typically diagnosed in patients between the 
ages of 40-60, with incidence increasing with age and are twice more common in 
women compared to men (Magill et al, 2018). Meningioma also occurs within 
children and adolescents; however this is a rare occurrence and accounts for 4.6% 
of patients with CNS tumours (Pećina-Šlaus et al, 2016).  

Meningioma originates from progenitor cells that develop into arachnoidal cap cells. 
These cells constitute the thin layer called the meninges which covers the brain and 
spinal cord (Pećina-Šlaus et al, 2016). Meningioma tumour growth can be either 
intraspinal or intracranial, the latter being more common with the primary sites of 
meningioma being intraspinal in only ~12% of patients (Saraf et al, 2011). 
Intracranial tumours can occur at the gyri (ridges) or sulci (folds) of the brain with the 
specific location having direct impact on prognosis surgical resection success and 
symptom presentation of patients (Desai and Patel, 2016). A theory of a relationship 
between hormones and meningioma progression exists and is based on 
observations such as the gender bias in prevalence, identification of hormone 
receptors on tumours and the influence of pregnancy and hormone replacement 
therapy has on tumour growth (Wiemels et al, 2010 and Gurcay et al, 2018).  

Classification of meningioma tumours by the World Health Organisation (WHO) 
consists of 3 groups: slow growing benign WHO grade I, atypical WHO grade II or 
malignant WHO grade III; these groups represent approximately 80%, 18% and 1-
3% of all meningiomas respectively (Louis et al, 2016). Grade I meningiomas criteria 
include 9 histologically defined subgroups and must lack criteria of the other two 
grades; as a result, there are difficulties for diagnostics in borderline cases, 
especially between grade I and grade II cases (Harter et al, 2017), as outlined in 
Figure 1.  

 

Figure 1: Histological criteria for WHO grading of meningioma. Adapted from (From Harter 
et al, 2017 under CC BY 3.0). Mitotic rate is based on the assessment of number of mitoses 

per 10 high power fields (HPF) and a non-standard sample area. 
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80% of meningioma cases are classed as slow growing benign tumours (WHO grade 
I), while the remaining 20% of tumours, WHO grade II and III, portray aggressive and 
metastasising behaviour with high propensity for recurrence thus have an increased 
morbidity and mortality (Pećina-Šlaus et al, 2016). 

The majority of symptomatic meningiomas can be successfully treated by surgical 
resection with or without adjuvant radiotherapy; yet, within WHO grade I the 
preferred management option for most patients is observation using magnetic 
resonance imaging (MRI) (Wang and Osswald, 2018). This is due to the morbidity 
associated with surgery and its variable success that is dependent on tumour 
location which ultimately dictates the degree of resection. Prediction of tumour 
recurrence is commonly based on the WHO classification and the extent of 
resection. However, other factors also influence risk such as tumour size, location, 
age and gender, increased mitotic activity and genetic characteristics (Dunn et al, 
2018). Currently 5-year recurrence rates following total resection is at 3%, 38%, and 
78% for grades I, II and III respectively, demonstrating there is a poor relapse-free 
survival for higher grade meningioma (Dunn et al, 2018). While the WHO 
classification system is often adequate in predicting outcome, in some cases grading 
is not sufficient long term as, for example, up to 20% of grade I tumours recur within 
20 years of total resection (Harter et al, 2017). Demonstrating the need for improved 
and more accurate tumour grading to reduce the frequency of inappropriate therapy 
decisions in meningioma to improve patient outcome.  

The genetic landscape of meningioma has been well characterised, with monosomy 
22 and inactivation mutations of NF2 gene being the most reported and the first 
genetic anomalies to be correlated with meningioma development (Pećina-Šlaus et 
al, 2016). The remaining ~40% of meningiomas that do not carry a mutated NF2 
gene but include mutations in TRAF7, AKT1, KLF4, PTCH1, PIK3CA, SUFU and 
PRKAR1A gene (Dunn et al, 2018). The recent development of high throughput 
genomic sequencing coupled with bioinformatic analyses has initiated research into 
detecting differentially expressed genes (DEGs) and their corresponding biological 
role within the different WHO grades to link particular genetic characteristics to a 
presenting phenotype. For example, Schmidt et al (2016) completed a transcriptomic 
analysis on the 3 WHO grades and clinical subgroups of 144 patients that were split 
into a discovery set (n=62) and a validation set (n=82).  They identified many DEGs 
associated with the different subgroups and confirmed findings using the larger 
validation set and immunohistochemistry staining. The study concluded that the 
aggressiveness of the disease was associated with upregulation of PTTG1 and 
downregulation of LEPR.  

By taking a bioinformatic approach to study the transcriptome of meningioma, the 
entire repertoire of RNA transcripts from a population of cells or tissues can be 
analysed simultaneously (Futschik et al, 2018). Measuring the transcriptome of a cell 
can be indicative of the relative gene expression taking place and can point to the 
relevant upstream regulation of expression. By taking a broader approach to 
understand gene expression instead of using targeted assays, it allows the 
investigation of coordinated trends that would have otherwise been lost. This gives a 
greater overview of gene interactions and networks and thus offers a more accurate 
representation of complex disorders, such as cancer (Lowe et al, 2017).  

In the last decade, many non-protein coding sequences, accounting for ~98% of the 
genome, have been found to function in gene expression regulation such as cis-
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regulatory regions and microRNAs (miRNAs). Recently through transcriptomic 
analysis, miRNA-200a has been identified to be downregulated by ~25-fold in 
meningioma and the overexpression of miRNA-109a has been associated with 
higher recurrence rates (Suppiah et al, 2019). Parallel with the identification of the 
role of theses regulatory sequences is the identification of non-coding mutations 
which have been implicated in cancer, proving the importance transcriptomics to 
analyse these regulatory mechanisms (Patel and Wang, 2018). Transcription factors 
(TFs) are proteins that bind to cis-regulatory regions to regulate gene expression; 
hence dysregulation of TF expression or binding have been identified in cancer 
(Patel and Wang, 2018). For instance, RNA sequencing identified FOXM1 TF as a 
driver for proliferation and a marker of poor outcome in meningioma (Vasudevan et 
al, 2018).  

This project aimed to investigate the genomic landscape of the WHO classification 
grades to develop biomarkers to improve the identification of meningioma grades as 
well as to infer their biological role. It was hypothesised that there would be 
significantly DEGs between the WHO grades and aggression tumour groups 
Furthermore, a closer observation of the driving forces of aggressive meningioma 
was carried out, such that various biomarkers from DEGs with potential use in the 
prognosis and risk stratification of patients could be identified. Additionally, different 
regulatory mechanisms and their potential influence on gene expression, and thus 
the subsequent phenotype presented in meningioma tumours, were examined.  

Material and Methodology 
For the bioinformatic analysis of transcriptomic data, a variety of web-based tools 
were used that give biological insights from complex and extensive raw microarray 
gene expression data. The material and methodology will describe, in chronological 
order, the data and tools used and the underlying statistical and bioinformatic 
algorithms and theories.   

Data Collection 
Publicly available microarray data deposited on the NCBI Gene Expression Omnibus 
(GEO) database was used to select a relevant experimental publication (Edgar et al, 
2002). Schmidt et al (2016) utilised the Illumina HumanHT-12 V4.0 expression 
beadchip microarray platform for measuring RNA. 

Figure 1: Sample distribution among WHO grade and clinical outcome subgroup, (From 
Schmidt et al, 2016 under CC BY 3.0). NR= tumours without any further recurrence in the 36 

month period, R= subsequent recurrent tumour of the same WHO grade after complete 
resection, M= subsequent recurrent tumour of a higher WHO grade after complete resection, 

NA= no follow up data obtained or incomplete resection of tumour. n= the number of 
samples in a category   
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GEO2R 
Normalised data deposited in the NCBI GEO database, GEO accession number 
GSE74385, was used in GEO2R differential gene expression analysis (DGEA) 
(Smyth, 2004). GEO2R online tools use a modified t-test implemented in the 
Bioconductor Limma (Linear Models for Microarray Analysis) package that 
overcomes the problem of small sample sizes in t-tests, thus allowing  more complex 
experimental designs (Ritchie et al, 2015). Limma uses linear models to analyse 
microarray data for DGEA. Linear modelling is used to obtain the probability that two 
groups have the same mean, which indicates there are no DEGs and thereby 
suggests that there is insufficient evidence to reject the null hypothesis (Smyth, 
2005). GEO2R for DGEA uses the GEO database to annotate Illumina probe IDs 
with non-redundant gene symbols.   
 
The Benjamini-Hochberg method was used to correct for multiple testing and to 
obtain the false discovery rate (FDR) (Wu et al, 2016). A FDR of 0.05 represents 5% 
of declared DEGs being false positive, hence genes with an adjusted p-value >0.05 
are deemed insignificant (Rogers and Weiss, 2009). Pairwise comparisons of the 3 
WHO grades and aggression groups defined from clinical outcome were made. The 
Non-Aggressive group (n=23) includes the 23 non-recurrent cases over the 3 WHO 
grades. Aggressive group (n=39) includes recurrent (R) and malignant (M) of the 3 
grades and the 3 not available (NA) of grade III as this grade has the highest 
recurrence rate of the WHO grades, Figure 2. 
 
Genes outputted from GEO2R into an excel file were classed as significant DEGs 
based on FDR and were divided into upregulated and downregulated genes based 
on a positive or negative logFC value respectively. The LogFC is the log2-fold 
change between the two comparison groups that describes the factor with which the 
expression is increased or decreased (Pacholewska, 2017). The grade I versus 
grade III comparison (I v.s. III) DEGs were filtered further by reducing the 
significance threshold to adjusted p-value<0.01 due to the large number of IDs. The 
overall work flow of DEGs from GEO2R for grade I v.s. III is shown in Figure 3, with 
a similar workflow implemented for other comparisons. From the GEO2R results 
‘GO.Function’ column was used in a preliminary investigation into potential TF. 
Filtered ‘transcription factor’ and then ‘transcription factor activity’ to identify any 
DEGs that function as TF.   
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Figure 3: Workflow of GEO2R data. Red highlighted are upregulated genes and Green 

highlighted represent the downregulated genes. The filtering was completed within a 
Microsoft Excel file using a cut-off of adjusted p-value<0.01 to include only significantly 

differentially expressed genes and the LogFC to divide upregulated genes from 
downregulated genes. Other comparisons used a cut-off of adjusted p-value<0.05 instead. 
Further filtering was completed in a preliminary analysis to identify differentially expressed 

transcription factors using the GO.Function associated with each gene. 
 

 

Removed 
18 genes had GO. 
Function involving 

‘Transcription Factor 
Binding’ Gene with GO. Function 

Involving  
‘Transcription Factor 

Activity’ 
 

Upregulated Genes 
16 

Downregulated Genes 
21 

Grade 1 v.s. Grade 3 
N= 20      N=28 

GEO2R Analysis 
31,385 Probe ID 

973 Gene.Symbols 
Significantly 

Differentially expressed, 
Adjusted p-value< 0.01 

Removed 
30,323 ID with Adjusted 

p-value >0.01 
89 IDs had no 
corresponding 
Gene.Symbol 

Upregulated Genes 
497 

Downregulated Genes 
476 

Genes with GO. Function 
Involving ‘Transcription 

Factor’ 
55 
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NetworkAnalyst 
The expression matrix file from GEO was downloaded and the information tags were 
edited appropriately for the specific group pairwise comparisons and were uploaded 
to NetworkAnalyst 2019 version for DGEA and visualisation of results (Xia et al, 
2015). Similarly to GEO2R, Limma is used for the DGEA with significance thresholds 
set as adjusted p-value <0.05 and Log2 fold change= 1. For the visualisation of 
DEGs between the comparison groups, heatmaps and 3D principle component 
analysis (PCA) clustering analysis was used. The KEGG pathway database was 
used to complete enrichment analysis on all identified DEGs, as well as within 
focused subsets of genes that were identified (via heatmaps) to have a relevant 
pattern of expression. PCA 3D analysis is a common unsupervised approach used to 
visualise high dimensional data. It is a mathematical algorithm where a multivariate 
dataset is linearly transformed whilst keeping maximum variation in the dataset. It 
reduces the dimension of the data, making is easier to visualise, and identifies the 
directions, known as principal components, of which a maximum of the variation of 
the data is explained. Visually, it might then be possible to identify whether particular 
groups overlap or form separate clusters (Metsalu and Vilo, 2015). Additionally, 
heatmaps represent individual expression values as colour gradients, such that each 
gene per sample is assigned a colour that relates to its expression level. This allows 
identification of visible clustering of genes with similar or different expression values 
(Zhao et al, 2014).  
 

WebGestalt  
WebGestalt (WEB-based Gene SeT AnaLysis Toolkit) 2017 version (Wang et al, 
2017) was used to complete two types of functional enrichment analysis: over-
representation analysis (ORA) and gene set enrichment analysis (GSEA).  
In ORA, genes that were both within an annotated functional category, such as a 
pathway or biological process, and set of DEG are counted (Dong et al, 2016). The 
overlapping genes have their significance assessed by Fisher’s exact test (Wang et 
al, 2017); therefore, ORA assesses whether genes from a particular pathway or 
biological process are overrepresented among the significantly DEGs (Dong et al, 
2016). In contrast, GSEA ranks all genes based on the relative level of differential 
expression (Liu and Ruan, 2014). A maximum enrichment score (MES) is calculated 
from the list of ranked genes in a specific category - miRNA or TF motifs. An 
enriched p-value is calculated from the comparison of ranked MES to randomly 
generate MES distributions which assesses whether an annotated gene set has a 
tendency towards being upregulated or downregulated, or if they are randomly 
distributed along the ranked list (Tipney and Hunter, 2010).  
The gene symbol list of DEGs was inputted into WebGestalt for ORA, where the 
upregulated and downregulated genes were analysed separately. The Illumina 
HumanHT-12 V.4.0 was selected as the reference set for analysis. Benjamini-
Hochberg FDR at FDR<0.05 was used in the advanced parameters. For both the 
upregulated and downregulated gene lists ORA using Gene Ontology (GO) 2019 
version (Ashburner et al, 2000), a functional database with computational models of 
biological systems, was used to investigate gene enrichment in the functional 
category ‘Biological_Process’. Additionally, ORA of ‘pathway’ functional category 
using the KEGG pathway database was performed (Kanehisa et al, 2019). Kyoto 
Encyclopedia of Genes and Genomes (KEGG) is a manually constructed database 
which curates’ models of pathways and biological processes.   
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GSEA was completed by inputting both the gene symbol list with the corresponding 
LogFC values of the DEGs. No reference gene list was needed for the analysis. 
Network ‘miRNA_target’ and ‘Transcription_Factor_Target’ functional categories 
were used which utilised the GSEA Molecular Signatures Database (MSigDB) 2017 
version (Subramanian et al, 2005) to give insights into the regulatory mechanisms of 
gene expression of the two trans-regulators: miRNAs and TFs. MSigDB uses motif 
gene sets, which are a collection of genes that are grouped based on shared short 
sequence motifs. These motifs represent known or likely sequences within either 
their 3’-untranslated regions (3’-UTRs) or promoters that are potential binding targets 
of miRNA or transcription factors, respectively (Subramanian et al, 2005). The 
miRNA targets are based on miRbase (2005), a microRNA database that gathers 
miRNA sequences and annotations found within scientific publications. Targets of 
transcription factors are catalogued from Xie et al (2005) study.   

X2KWeb 
2018 version eXpression2Kinase Web (X2KWeb) was used to computationally 
predict potential TF influence on observed DEGs (Clarke et al, 2018). Transcription 
factor enrichment analysis (TFEA) was completed on the DEG list inputted into the 
tool to identify TFs that were most likely to regulate the DEGs and generate the 
mRNA expression levels observed. TFEA was completed using the ChIP-X 
database, a gene-list database compiled from 84 published experiments that report 
on the binding of specific TFs to DNA proximal to target gene loci (at the genome-
wide level) using ChIP-seq and ChIP-chip methods (Lachmann et al, 2010). TFEA 
ranks individual TFs based on how likely they are to cause the observed gene 
expression and thus identifies the over-representation of specific TF targets within 
the gene symbol list. X2KWeb uses Fisher’s exact test to complete statistical 
enrichment and Bonferroni’s adjustment to account for multiple testing (Clarke et al, 
2018).  

Morpheus  
Morpheus (2019) version was used to visually present the differentially expressed 
TFs identified from GO.Function filtering of GEO2R results within a heatmap with 
gene clustering. The expression matrix file was edited to only include the Ilumina 
probe IDs that corresponded to identified TF gene symbols and then uploaded to 
Morpheus. Both the grade and the level of aggression was annotated for each 
sample column and rows were annotated with gene symbols. Hierarchical clustering 
of the TF genes was completed using the average linkage method with a minimum 
and maximum distance of -1 and 1, respectively.  

Results 
To study dysregulation in meningioma and predict the upstream regulator 
mechanisms, publicly available microarray datasets generated by Schmidt et al 
(2016) were reanalysed. The aim is to identify groups of genes associated with 
pathways and processes that are atypical in subgroups of meningioma by 
completing enrichment analysis on the DEGs. Furthermore, I undertook a prediction 
of the influence of TF and miRNA by the observed expression of genes that contain 
specific target motifs.  
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Quality Control 
Data Distribution 
 
For most microarray analyses, it is preferred that data from different samples share a 
similar distribution due to simplicity in downstream statistical analysis and 
interpretation. Figure 4 depicts a histogram of all the microarray data from the 62 
tumour samples to evaluate the overall distribution of data prior to analysis with 
GEO2R. As seen below, there is little variance in the means and the standard 
deviations among the samples, hence it suggests that the data from different 
samples follow a similar general distribution.  

Figure 2: Histogram of the 62 microarray samples to check for normal distribution, 
histogram constructed using online tool GEO2R. 20 Orange are WHO Grade I, 14 Pink are 

WHO Grade II, and the 28 Blue are WHO Grade III. 
 
Clustering of Data 
Another quality control step taken was to perform cluster analysis on all the samples 
before filtering for DEGs, using PCA plot clustering to identify possible outliers where 
samples do not cluster with their WHO grade. Figure 5 A&B shows that T53, T40 
and T39 (classified as 3R, 3NA and 3NA, respectively) were separated from the 
main cluster of samples and may indicate potential sample contamination (Zhao et 
al, 2014). However, heatmap cluster analysis based on DEGs found the 3 samples 
were all clustered in the largest aggressive cluster shown in Figure 6, therefore they 
were kept and used in downstream analysis.  
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Figure 3: A&B- PCA clustering plot for quality control of the two comparisons, 20 Red- 
Grade I, 14 Brown-Grade II, 28 Green- Grade III, 39 Blue- Aggressive, 23 Pink- Non-

Aggressive. Constructed using online tool NetworkAnalyst. 
 
 
In Figure 5, the samples of the same grade did appear to be located in close 
proximity to each other, with grade II samples situated in the middle of the main 
cluster and both grade I and grade III tumour samples being at opposite ends of the 
cluster. However, there is no clear distinction between the grades.  
Figure 6 shows the clustering of samples based on gene expression of significantly 
differentially expressed cell cycle enriched gene of the non-aggressive and 
aggressive comparison. The largest cluster consists of aggressive samples, whereas 
the non-aggressive samples group into smaller clusters. This suggests a greater 
heterogeneity in gene expression levels in the non-aggressive samples. Figure 6 
also illustrates the expression levels of genes that were found through ORA to be 
enriched in the cell cycle pathway. From the clustering within the aggressive 
samples there is upregulation in the genes involved in cell cycle compared to the 
non-aggressive group which are frequently downregulated.   
 

Differentially Expressed Genes 
By completing GEO2R differential gene expression analysis, DEGs at a significance 
level of adjusted p-value<0.05 were found for the comparisons of I v.s. III and NA 
v.s. A alone. Further filtering of I v.s. III comparison resulted in 973 genes (adjusted 
p-value<0.01) whereas NA v.s. A comparison resulted in 1426 genes (adjusted p-
value<0.05). Figure 7 shows the distribution of the DEGs and the 498 significantly 
upregulated and 475 downregulated genes from the I v.s III comparison. Figure 8 
shows 818 significantly upregulated genes and 763 significantly downregulated 
genes in the NA v.s. A comparison. 

 

A B 
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Figure 4: Clustered heatmap of genes that are differentially expressed between non-
aggressive and aggressive tumours and that are associated with the cell cycle based on 

ORA enrichment analysis. Colour spectrum correlates to level of gene expression such that 
red denotes upregulation, blue denotes downregulation. The Network Analyst ORA produce 

multiple heatmaps of enriched biological processes, which shows the up and down 
expression of genes from the non-aggressive versus aggressive tumour comparison. 

Biological process ‘Cell Cycle’ had the most enriched genes (n=38, p-value <0.05) and 
therefore is included in this paper. The block of colours at the top indicate the clustered 
groups of the two different classes. Samples T53, T40 and T39 are highlighted by an 

asterisks (*), pink represents the aggressive class and blue represents the non-aggressive 
class of tumour samples. 

 
 
Table 1 and Table 2 present the genes achieved the highest significance. 
Interestingly, upregulation of PTTG1 and downregulation of MAN1C1, ANAPC16 and 
LEPR was found in both I v.s. III and NA v.s. A comparisons. For a complete DEG 
list excel file contact author. From Table 1, the upregulated genes, TPX2 and ASPM, 
associated with microtubule functional and are involved in cell cycle; however, PRC1 
is upregulated whereas ANAPC16 is downregulated. A similar divergence of cell 
cycle genes can be found in Table 2 with CDCA5 upregulated and ANAPC16 
downregulated. A literature review revealed that many common genes associated 
previously with meningioma were not included in the DEG list with only 1 identified in 
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I v.s. III comparison, SFRP1, and 2 in the NA v.s. A comparison, SFRP1 and 
PIK3CA indicating the complementary information contained in the microarray 
experiment. A note of caution: When completing DGEA using NetworkAnalyst, there 
were discrepancies between the lists of DEG generated. NetworkAnalyst tool 
identified the PTEN gene, known for its association with multiple cancers, to be 
significantly downregulated (adjusted p-value= 0.008041); this was not identified in 
GEO2R analysis. 
 

Table 1: Grade I v.s Grade III differential gene expression analysis results, the 5 most 
significantly upregulated and downregulated genes are shown in red and green, 

respectively. The 3 genes in bold are genes identified through a literature search that have 
been previously reported in meningioma, the symbol * indicates key genes identified in 

original Schmidt et al (2016) study.  
 

Gene 
Symbol 

Gene Title Adjusted P 
value 

LogFC 

OIP5 Opa interacting protein 5 0.00000436 
 

0.522 

TPX2 TPX2, microtubule nucleation factor 0.00000436 
 

1.35 
 

PRPF3 pre-mRNA processing factor 3 0.00000441 
 

0.743 
 

PRC1 protein regulator of cytokinesis 1 0.00000456 
 

1.9 
 

ASPM abnormal spindle microtubule 
assembly 

0.00000805 
 

1.79 
 

PNRC2 
 

proline rich nuclear receptor 
coactivator 2 

 

0.00000436 -0.712 
 

ANAPC16 
 

anaphase promoting complex subunit 
16 
 

0.00000441 -0.697 
 

CRYL1 
 

crystallin lambda 1 
 

0.00000789 
 

-0.778 
 

ZC2HC1C 
 

zinc finger C2HC-type containing 1C 
 

0.00000883 
 

-2.23 

MAN1C1 
 

mannosidase alpha class 1C member 
1 
 

0.00001038 
 

-1.62 

PTTG1* pituitary tumor-transforming 1 0.00007359 0.932 

LEPR* leptin receptor 0.000477 
 

-2.14 
 

SFRP1 secreted frizzled related protein 1 0.00689228 -2.3 
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Table 2: Non-Aggressive v.s. Aggressive differential gene expression analysis results, the 5 
most significantly upregulated and downregulated genes are shown in red and green, 

respectively. The 4 genes in bold are genes identified through a literature search that have 
been previously reported in meningioma, * key genes identified in original Schmidt et al 

(2016) study.  
Gene 

Symbol 
Gene Title Adjusted P 

value 
LogFC 

RCN1 
 

reticulocalbin 1 
 

0.00009055 1.342013 
 

CDCA5 
 

cell division cycle associated 5 
 

0.00011333 
 

0.509429 
 

IMP4 
 

IMP4 homolog, U3 small nucleolar 
ribonucleoprotein 

 

0.0001998 
 

0.760898 
 

PRELID1 
 

PRELI domain containing 1 
 

0.0001998 
 

0.567713 
 

ADRM1 
 

adhesion regulating molecule 1 
 

0.0001998 
 

0.342146 
 

FAM167B 
 

family with sequence similarity 167 member 
B 

0.00002581 -0.3384 

MAN1C1 
 mannosidase alpha class 1C member 1 0.00009507 -1.34947 

ANAPC16 
 

anaphase promoting complex subunit 16 0.000113 -0.56758 

YPEL2 
 

yippee like 2 0.000142 -0.61066 

RAVER2 
 

ribonucleoprotein, PTB binding 2 0.0002 -0.70577 

PTTG1* pituitary tumor-transforming 1 0.00443553 
 

0.670423 
 

LEPR* leptin receptor 0.00042187 
 

-2.02564 
 

PIK3CA 
 

phosphatidylinositol-4,5-bisphosphate 
3-kinase catalytic subunit alpha 

 

0.043989 
 

-0.14251 
 

SFRP1 
 

secreted frizzled related protein 1 0.003253 
 

-2.0098 
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Figure 5: Volcano plot of differentially expressed genes from Grade I v.s. Grade III 

comparison, significantly (adjusted p-value<0.01) upregulated and downregulated genes are 
highlighted in red and green, respectively. Interesting genes, either are the top 5 up or 

downregulated genes or found in a literature search, which are highlighted in black and have 
been labelled with gene symbol. 

Figure 6: Volcano plot of differentially expressed genes from Non-Aggressive v.s. 
Aggressive comparison, significantly (adjusted p-value<0.05) upregulated and 

downregulated genes are highlighted in red and green, respectively. Interesting genes, 
either are the top 5 up or downregulated genes or found in a literature search, which are 

highlighted in black and have been labelled with gene symbol. 
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Over Representation Analysis 
ORA using GeneOntology of DEGs from I v.s. III comparison identified significantly 
overrepresented biological processes within the upregulated genes but not in the 
downregulated genes. Also, no downregulated genes were enriched in the KEGG 
pathway ORA.  

Figure 7: Bar Chart illustrating the ORA GeneOntology results of grade I  v.s. grade III, the 
39 enriched biological pathways are shown with the number of gene observed in the 

upregulated gene list and the number of genes that would be expected based on size of 
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gene list is given in orange and blue, respectively. * The 2 biological processes that are 
overrepresented but are not a subcategory of cell cycle or mitosis.  

 
9 biological processes were overrepresented among the upregulated genes. 
However only 2 biological processes, ‘ncRNA metabolic process’ and ‘ncRNA 
processing’, were not involved in any aspect of mitosis and cell cycle as indicated by 
asterisk (*) in Figure 9. This trend was also found in the KEGG pathway analysis as 
of the 8 pathways found to be over represented within the upregulated genes, the 
second most significantly enriched was the cell cycle pathway, see Figure 10. Figure 
9 shows that ‘cellular response to DNA damage stimulus’ had the largest odd ratio 
as it had the greatest difference in the number of expected (3) and observed genes 
(57). This was also found in ORA of pathways as Fanconi anaemia pathway which 
functions in DNA damage repair, was reported to be over represented and had 18 
genes associated in the pathway, Figure 10. In contrast metabolic pathways were 
identified as the most significantly overrepresented pathway as there were 59 
annotated associated genes however this was not identified in the ORA biological 
process analysis.   

Figure 8: Pie Chart of ORA KEGG pathway results of the upregulated genes from Grade I 
v.s. Grade III comparison. The surrounding numbers display the number of observed genes 

associated with the specific pathway. 
 
ORA of the DEGs from the NA v.s. A comparison identified no overrepresented 
downregulated genes within Gene Ontology biological processes or KEGG pathway 
at a significance level of adjusted p-value<0.05. ORA of the upregulated genes 
identified 302 enriched categories, of which the 10 most significantly enriched 
categories were analysed further, see Figure 11. 9 out of 10 enriched processes 
were sub-groups of cell cycle, for example ‘DNA metabolic process’ and ‘nuclear 
division’, which are needed for proliferation of cells, with ‘ncRNA metabolic 
processes’ being the exception. This trend is highlighted in Figure 12 as the 
hierarchical structure shows a clustering of linked biological processes involved in 
cell cycle. From the ORA using the KEGG database there were 11 pathways that 
were significantly overrepresented. Similarly, to the Gene Ontology enrichment, cell 
cycle was the most significant result with 20 associated upregulated genes. 
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Interestingly spliceosomes classed as non-coding RNA (ncRNA), were also identified 
from KEGG analysis, with 17 associated upregulated genes. From Figure 11 and 
Figure 12 of the ORA biological process analysis, ncRNA metabolic processes was 
found to be significantly enriched, therefore furthering the significance of 
spliceosomes as an enriched pathway in the upregulated genes of aggressive 
compared to non-aggressive tumours.  

Figure 9: ORA Gene Ontology results of the upregulated genes from Non-Aggressive v.s. 
Aggressive comparison. Only the 10 most significantly overrepresented are reported as the 
analysis identified 302 enriched biological processes. The surrounding numbers display the 

number of observed genes associated with the specific biological process. 
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Figure 10: ORA of biological process results as shown in an inverted tree structure 
to represent Gene Ontology were biological processes are placed in a hierarchical 

structure. For ease of investigation I have circled and enhanced the biological 
processes of interest. The different shades of red correlate to significance of 

enrichment, ncRNA metabolic process is in a darker shade of red indicating is more 
significantly enriched than the surrounding and related biological processes. The 

blue circle indicates the main cluster of biological processes under the broad 
category of cell cycle process. 

 

 

Influence of Regulatory Mechanisms  
Transcription factor influence was investigated by collating results from GO.Function 
filtering, GSEA enrichment using ‘Transcription_Factor_Target’ functional category 
and X2KWeb which the upregulated and downregulated genes were analysed 
separately. MiRNA influence was described from GSEA enrichment using 
‘MiRNA_Target’ functional category results. See Table 3 for an overview of results 
and Supplementary Material 1 & 2 for complete results. 
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Table 3: Results of transcription factor and miRNA influence analysis. 3 different 
approaches on the differentially expressed gene list are shown with the number of 
transcription factors (TF) and miRNA identified using each approach within the two 

comparison groups.  
 
 
 

 Grade I v.s. Grade III Non-aggressive v.s 
aggressive 

GO.Function filtering (TF) 37 83 
GSEA (TF) 20 20 

GSEA (miRNA) 20 20 
X2KWeb upregulated (TF) 103 104 
X2KWeb downregulated 

(TF) 
104 103 

 
 
When examining all methods applied for the investigation of regulatory mechanisms 
a trend in the results is the identification of a family of transcription factors, Forkhead 
Box (FOX). There were 10 and 12 instances of FOX involvement recorded in the I 
v.s. III comparison and NA v.s A comparison, respectively. Using the X2KWeb 
analysis, the family of TFs were found to have targets in the upregulated and 
downregulated gene list, indicating both excitatory and inhibitory regulatory roles. A 
further trend within the TF results was the identification of Pax4 TF in both 
comparison groups. Figure 13 shows two clusters; the first cluster consists of 
downregulated and upregulated TF genes in grade I and grade III, respectively, 
whilst the converse observation was  found in the second cluster. There are two sub 
clusters that show the most significant DEGs as shown by the deep colour gradient, 
15 and 23 TF genes are shown in sub cluster 1 and 2, respectively. Similar to Figure 
6, Figure 13 shows different TF expression between the 3 grades but also between 
the clinical aggression groups. FOXM1 TF is shown to be upregulated in the higher 
grades but also, based on the variation of expression in the heatmap, it is 
upregulated in the aggressive group with the same expression pattern identified for 
the PTTG1 gene. From the miRNA results there were 7 miRNAs (highlighted green 
in Supplementary Material 1 and 2) identified in both comparison groups however no 
other significant trends were identified. The influence these TF and miRNA 
preliminary results have on gene expression level will be evaluated in the discussion 
below along with the investigation of potential biomarkers of aggression from the 
DEG analysis results.  
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Figure 11: Heatmap Cluster Analysis of DEGs encoding TFs. Colour spectrum correlates to 
level of gene expression. Red is upregulated and blue is downregulated.  Heatmap created 
using Morpheus online tool and edited expression matrix file. Cluster analysis shows two 

main clusters that show opposite TF gene expression and sub clusters based on significantly 
DEGs that show differences between WHO grades and clinical groups.  
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Discussion  
Schmidt et al (2016) conducted the original microarray study of which the data was 
publicly available. This cohort was mainly chosen because it included a large cohort 
of grade 3 meningioma patients. Although they not representative of true prevalence, 
the balanced numbers allowed statistical comparisons to be made. Furthermore, the 
choice of storage of the tumour biopsy samples used in this study was advantageous 
as they were stored at -80°C instead of formalin-fixed paraffin-embedded (FFPE) 
processed samples, which can lead to fragmentation of DNA and RNA (Choi et al, 
2017). A limitation of Schmidt et al (2016) study was that they only described the 
gene transcripts in the different grades. I have complemented this with a system 
bioinformatics approach for the prediction of causative mechanisms behind the 
described gene transcripts by investigating the role of regulatory mechanisms, a 
novel aspect of analysis of this data set.  
 
The discrepancies in identified DEG sets from the two independent online tools, 
GEO2R and NetworkAnalyst, illustrates the influence of bioinformatic platform used 
in analysis and is due to the differences within the Illumina probe annotation files. 
This give additional confidence in the DEGs identified by two independent 
computational platforms and is an advantage of my method design as shows that 
neither of the tools are comprehensive in identifying DEGs and should therefore be 
used to complement each other. Benjamini-Hochberg adjustment was used to 
control FDR over the Bonferroni adjustment for the significant threshold of DEGs and 
to account for multiple testing (Chen et al, 2017), because Bonferroni adjustment 
tends to be too stringent in the case of transcriptomic analysis. However, the FDR 
method assumes independence of tests, which in the context of gene expression 
leads to the assumption that DEGs identified work independently (Stevens et al, 
2017). Therefore, enrichment analysis was performed to rectify this, and has 
advantages over a ranked list of genes from DGEA as it is more representative of 
the complexities of interacting gene groups as typically one gene has no 
independent influence on a phenotype (Tipney and Hunter, 2010). A limitation of 
enrichment analysis was that I did not account for the non-independent functional 
biological process categories and therefore all genes enriched within a specific 
category will also be enriched in the more general category. This artificial increase in 
number of linked significant categories maybe an explanation for the number of 
enriched categories associated in cell cycle processes found in both comparisons. 
This could have been controlled for by considering a specific size of categories or by 
using the ‘Biological_process_non_redundant’ functional category in WebGestalt.  
Overall the PCA did not show clear separation in the global transcriptome between 
the grades or clinical aggression groups and therefore, to separate the different 
grades and predict aggression, the identification of particular DEGs is required. A 
plethora of conclusions can be drawn from the unbiased examination of generated 
results. I will, however, focus on a few conclusions that offer the potential as 
biomarkers or have relevance in meningioma pathogenesis as they make biological 
sense or have been previously reported to have influence in meningioma or cancer 
in general. Further experimental research will be needed to confirm the influence of 
identified potential biomarkers, for example knockout experiments to investigate the 
role of the genes and immunohistochemical staining to confirm observed expression 
changes translate onto protein level (Schmidt et al, 2016).  
 
A common trend from enrichment analysis over both comparison groups and 
functional category was the over representation of upregulated genes involved in cell 
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cycle processes. This indicates that cell cycle process is upregulated in grade III and 
aggressive tumours compared to grade I and non-aggressive, respectively. Limitless 
replicative potential is a hallmark of cancer and through atypical proliferation, which 
required both increased cell cycle and loss of regulatory check points, generates a 
mass of cell that constitutes a tumour (Hanahan and Weinberg, 2000). This 
increased cell cycle leads to progressive erosion of telomeres, with shortened 
telomeres being linked to high tumour grades (Chan et al, 2001), and culminates in 
chromosomal fusions and instability. Therefore, increased cell cycle could explain 
the chromosomal alteration in meningioma such as del(1p36) that are associated 
with higher grades and indicate poor outcome (Pećina-Šlaus et al, 2016).    
From Schmidt et al (2016) two novel prognostic biomarkers independent of WHO 
grade were identified, LEPR and PTTG1, and malignancy-associated protein 
expression changes were confirmed via protein staining. From DEGs I also identified 
a downregulation of LEPR and upregulation of PTTG1 in aggressive and grade III 
groups. Downregulation of LEPR, encoding for leptin receptor, has been previously 
identified as a biomarker of recurrence in meningioma in Menghi et al (2011) 
microarray gene expression analysis study. Although the influence of LEPR in 
meningioma is unknown, knockout experiments of LEPR in rats results in leptin 
resistance, a characteristic of obesity, and whole-exome sequencing identified 
multiple LEPR mutations within obesity patients (Picó et al, 2002 and Gill et al, 
2014). Notably, obesity has been found to be significantly increased within 
meningioma patients and therefore suggest a relationship. PTTG1, pituitary tumour-
transforming gene-1, is a novel gene in meningioma but is a known oncogene in 
other cancer with its expression levels correlating with a degree of malignancy 
(Schmidt et al, 2016). Yoon et al (2012) found PTTG1 was highly expressed in 
breast cancer patients and enhanced migratory and invasive behaviour of the tumour 
by inducing epithelial to mesenchymal transition (EMT). PTTG1 increases Snail, 
Slug, Twist and Zeb1 TF which have activator and repressor function on genes that 
results in morphological changes associated with EMT. Within X2KWeb results both 
Zeb1 and Twist1 TF were identified to have targets in both up and down regulated 
DEGs and therefore indicate the involvement of PTTG1 in the more aggressive 
meningiomas.  
 
Spliceosome are a novel aspect in meningioma pathogenesis and were discovered 
to be an enriched pathway in the upregulated genes of aggressive v.s. non-
aggressive samples with 17 genes identified. Serine and arginine rich splicing factor 
6, SRSF6, has been associated in progression of breast cancer with epidemiological 
and experiment evidence highlighting the involvement of estrogen and estrogen 
receptor (ER) in the splicing factors function. In normal cells, estrogen reduces levels 
of SRSF6 which causes an exon skipping RNA splicing event of CRH-R1 gene, a 
hormone receptor, and the alternative splicing affects the receptor functionality 
leading to the suppression of estrogen-induced cell proliferation (Silipo et al, 2015). 
The influence of hormones is shared in both meningioma and breast cancer 
progression and from the results I infer that in aggressive meningioma the 
upregulated SRSF6 gene appropriately splices the CRH-R1 gene and thus the 
receptor functions and leads to cell proliferation and tumour growth which occurs in 
more aggressive tumours. Potentially the ER located on some meningioma tumours 
act to sequester the function of estrogen to inhibit SRSF6 expression and therefore 
allow the downstream signalling resulting in cell proliferation and more aggressive 
presentation (Lal et al, 2013). The identification of SRSF6 role in cell proliferation 
and its regulation is a potential mechanism behind the correlation of ER positive 
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meningioma patients with poor prognosis compared to ER negative patients (Hua et 
al, 2018).  
 
Many differentially expressed TF or TF that had targets within the DEG set can be 
further classed as pioneer factors that influence gene expression by targeting 
nucleosome DNA. They cause chromatin remodelling, for example chromatin 
opening, so many previously inaccessible genes can be expressed and thus greatly 
alter the cell-fate (Iwafuchi-Doi, 2018). FOX, forkhead box, TF family are prime 
examples and were found frequently in my results. Vasudevan et al (2018) 
transcriptomic analysis of RNA-Seq identified FOXM1 as a key TF in meningioma 
proliferation and associated with poor prognosis. FOXM1 functions to dysregulate 
the Wnt signalling pathway to drive proliferation and tumour growth. This Wnt 
dysregulation has been documented in meningioma previously and is a trend 
identified in my DEG results. FOXM1 interacts directly with beta-catenin to transduce 
Wnt signals but also suppresses antagonists to have sustained Wnt signalling and 
proliferation. SFRP1 supresses the Wnt pathway however this was identified in 
results as significantly downregulated. This was also identified in Vasudenven et al 
(2018) and was suggested to be epigenetically silenced through the 
hypermethylation of SFRP1 promotor. Both the results of my transcriptomic analysis 
and other transcriptomic studies found FOXM1 as a potential biomarker of 
meningioma aggression and indicated its role in the epigenetic silencing of SFRP1 
gene, a further biomarker in meningioma.  
 
Of the miRNA identified no significant trends were found with only one miRNA, mir-
145, having been previously identified to have influence in meningioma. However, 
the predicative function of mir-145 inferred from observed DEGs does not correlate 
with previous findings that mir-145 levels are decreased in higher grades (Galani and 
Lampri, 2017). Although no conclusive evidence of the influence of miRNA in 
meningioma aggression was found in my analysis this avenue of research has great 
potential and further research is needed. Many non-coding regions are considered 
pharmaceutically ‘druggable’ and therefore have application in reducing meningioma 
burden (Amodio et al, 2017). 
 

Conclusion  
In conclusion by taking a bioinformatic approach for the description of DEGs and the 
prediction of regulatory mechanisms I have identified multiple potential biomarkers of 
aggression in meningioma. These will aid classification of tumour grade and 
therefore be a more accurate tool for prognosis prediction. Furthermore, the 
biological role of novel genes and pathways has been inferred and adds to the 
understanding of the pathogenesis of meningioma. Finally, by investigating the 
upstream regulatory mechanism of abnormal gene expression, therapies can be 
designed to target these to correct the dysregulated gene expression and to then 
reduce the burden of meningioma and improve patients’ health.  
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