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Edward Evans

Project Advisor: Dr. Daniel Robertz, School of Computing, Electronics, and
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Abstract
The project aims to deliver sufficient mathematical background to understand a partial
proof, due to Ernst Kummer, of Fermat’s last theorem for a specific class of primes
called regular primes. In doing so, we also develop some theory that is applicable to
a wide range of scenarios in modern number theory, a few of which are discussed in
somewhat more superficial detail in the final section.
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Introduction
Cubum autem in duos cubos, aut quadratoquadratum in duos
quadratoquadratos et generaliter nullam in infinitum ultra
quadratum potestatem in duos eiusdem nominis fas est dividere
cuius rei demonstrationem mirabilem sane detexi. Hanc
marginis exiguitas non caperet.

— Pierre de Fermat [1]

Pierre de Fermat was a 17th century French lawyer and amateur mathematician, per-
haps best known for his so-called Last Theorem. Fermat famously made annotations
in his copy of Diophantus’ Arithmetica (from which we take the name Diophantine
equation), all of which were published posthumously by his son Samuel de Fermat
as an appendix to a restored edition of Arithmetica. One-by-one, as the story goes,
each of the unjustified annotations was proven. Finally, cl1 problem 8 in Book II of
Diophantus’ Arithmetica asks [2, p.2]

“Given a number which is a square, write it as a sum of two other squares.”

Fermat’s notorious annotation of this problem follows (a translation of the epigraph
heading this section given in [2]):

“On the other hand, it is impossible for a cube to be written as a sum of two
cubes, or a fourth power to be written as a sum of two fourth powers or,
in general, for any number which is a power greater than the second to be
written as a sum of two like powers. I have a truly marvelous demonstration
of this proposition which this margin is too narrow to contain.”

The symbolism we have today grants us a much more succinct expression of this
annotation:

“For any natural number n > 2, there exists no integer triple (x, y, z) with
xyz 6= 0 such that xn + yn = zn.”

It is exactly this assertion that we refer to now as Fermat’s last theorem1, being the
last of his annotations to be proven.

The aim of this project is to provide sufficient mathematical background in order to be
able to understand a modernised version of a partial proof of Fermat’s last theorem due
to Ernst Kummer. By modernised, I mean that most of the modern algebraic language
used in this project was not available to Kummer. Indeed, most of his original proof in
[13] was given in terms of so-called ideal complex numbers and his regularity condition
was given in terms of divisors of the numerators of Bernoulli numbers.
In the introductory section we shall provide some of the mathematical background
and terminology required to launch into the main subject matter of the project. This
includes a (very) brief exposition of groups, rings, and modules (including the special
case of vector spaces).
In Section 1 we shall see some of the main results in field theory and the related Galois
theory. In the first section we shall see a way of constructing field extensions, prove

1Of course, without proof this name was inaccurate; some texts published prior to Wiles’ proof refer
to the “theorem” as Fermat’s conjecture, though these are by far in the minority.
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that the degree of a field extension is the product of the degrees of intermediate ex-
tensions, and discuss the properties of separability and normality. The second section
is reserved for the Galois theory of fields both of characteristic 0 and of characteristic
p, which will be used extensively throughout the project.
Following Section 1 we specialise to the case of number fields in Section 2. We dis-
cuss some numerical invariants of number fields, in particular the norm, trace, and
discriminant of a number field. By analogy with Q, we define the ring of integers of a
number field to be a subring of the number field with some properties analogous to Z
as a subring of Q. These rings are the main setting for the partial proof of Fermat’s
last theorem discussed in Section 4.
Section 3 gives a much closer look at the properties of rings of integers as discussed in
Section 2. In general, the ring of integers of a number field fails to retain the unique fac-
torisation properties that we enjoy in Z. To replace this, we develop a notion of unique
factorisation at the level of ideals, and this will coincide with the unique factorisation
of elements if and only if the ring under consideration is a principal ideal domain. The
section following this discusses the notion of prime factorisation in a number field. That
is, we discuss the question “when is a prime of Z still a prime of the ring of integers
of a number field, and if it is not, how does this prime factorise in this new setting?”.
To finish the section, we shall discuss a way of quantifying the failure of a given ring
of integers to be a unique factorisation domain. To do this, we endow the set of frac-
tional ideals with a group structure with the product of fractional ideals as the group
operation. In particular, the set of all principal fractional ideals is a normal subgroup
of this group, and so the quotient of the group of fractional ideals by this subgroup is
well-defined. We call this the ideal class group of the number field and its order will be
referred to as the class number of the number field.
Section 4 contains the proof of Fermat’s last theorem for regular primes. After defining
what it means for a prime to be regular, we state and prove a few lemmas (save
Kummer’s lemma, whose proof is beyond the scope of the content of this project) that
will be used in the proof. As regards the actual proof, we shall split the statement into
two cases depending on the divisibility of the solution (x, y, z) by the exponent p. Case
1 is the easier of the two and concerns the case where p - xyz. In this case, we shall
show that Fermat’s equation factors into linear factors over the relevant field (called
a cyclotomic field) and that, when considered as an equation of ideals, the regularity
condition on p allows us to reduce the equation to an equation of elements, leading
to a contradiction. Case 2, when p | xyz, is harder and requires us to reformulate the
statement of Fermat’s last theorem. In fact, we shall prove a stronger statement which
can be reduced to the case of Fermat’s last theorem. When written as an equation of
ideals, that p | xyz causes us to lose the coprimality condition on the relevant ideals
that made Case 1 easier to prove. Fortunately we can go some way to restoring this
by undertaking a closer inspection of these ideals. Inevitably, we shall also reach a
contradiction by Fermat’s beloved method of infinite descent.
To conclude the project, Section 5 gives a slightly superficial insight into some possible
areas of future study. In particular, the 20th century saw the development of class field
theory, which provides information on so-called Abelian extensions of number fields
based on information intrinsic to the number field2. We discuss the decomposition and

2To be slightly more technical, class field theory provides an isomorphism between quotients of
the ideal class group of a number field and the Galois group of an extension of a number field. This
isomorphism provides a structural comparison between the ring of integers of a number field and the
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inertia groups of a prime ideal in a Galois extension of a number field and see how a
field extension can be decomposed into several intermediate extensions over which a
prime ideal of the ground field splits in a very predictable fashion. To finish, we discuss
the Artin map and the homomorphism it induces between the group of ideals of a num-
ber field and the Galois group of an extension. Class field theory tells us that when
this extension is the Hilbert class field (for which the Section is named!), the homo-
morphism is surjective and that the kernel is exactly the subgroup of principal ideals,
thus inducing an isomorphism between the ideal class group of the number field and
the Galois group of the Hilbert class field.

Mathematical Background
We shall use this section to provide a short list of terminology that will be used through-
out the project. Most of the relevant properties of the objects we discuss are assumed.

Group Theory

By group we shall mean a set G together with a binary operation · : G × G → G such
that

(i) if g, h ∈ G then g · h ∈ G,
(ii) there is an element e ∈ G with g · e = e · g = g for all g ∈ G, called the identity of

G,
(iii) for all g ∈ G there is an element g−1 ∈ G such that g · g−1 = g−1 · g = e called the

inverse of the element g, and
(iv) for all g, h, i ∈ G, we have g · (h · i) = (g · h) · i, called associativity.

An Abelian group3 is a group G with the additional property that g · h = h · g for all
g, h ∈ G, called commutativity.
By subgroup we shall mean a subset H of G such that H also forms a group under the
same operation as G. The subgroup generated by an element of G, which we denote
(g), is the smallest subgroup of G containing the element g. Given an element g of G
and a subgroup H of G we call the set gH = {gh : h ∈ H} a left coset of H in G, with
a corresponding definition for right coset. The left/right cosets of H in G partition G.
If gH = Hg for all g ∈ G then we call H a normal subgroup of G and write H E G.
In particular, if H is a normal subgroup of G then we may define a group operation
(g1H)(g2H) = (g1 · g2H) on the set of cosets of H in G, which we call the quotient of G
by H and write G/H, read G modulo H.
In most cases the notation will be relative to the objects under consideration. For
instance, if G = Z and · : Z × Z → Z is addition we shall write + instead of ·, as one
might expect. In the context of multiplication or of function composition we shall often
simply use juxtaposition to represent the binary operation (though this convention may
occasionally be abandoned in the name of clarity).
An action of a group G on a set S is a function π : G× S → S with

Galois group of the extension, and the Galois correspondence tells us what we need to know about the
intermediate extensions. Unfortunately the more general scenario is far beyond the scope of this project
and so we restrict ourselves to a discussion of the “easiest” class field.

3Named for Niels Henrik Abel, a Norwegian mathematician. Bearing his name is the Abel-Ruffini
theorem, the proof that the general quintic is insoluble in radicals.
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(i) π(e, s) = s for all s ∈ S, where e is the identity of G, and
(ii) π(g1g2, s) = π(g1, π(g2, s)) where g1, g2 ∈ G and s ∈ S.

To give a simple example, we may take for G the group GLn(R) of n × n invertible
matrices with coefficients in R and S = R2 the set of 2-vectors with coefficients in R.
Then π(M, v) = Mv is a group action4.
A group homomorphism between two groups G and H is a map ϕ : G → H with the
property that ϕ(gh) = ϕ(g)ϕ(h) for all g, h ∈ G. The usual Bourbaki nomenclature
applies when describing such maps, as well as some more subject-specific naming
conventions; a bijective group homomorphism is an isomorphism, for instance.

Ring Theory

A ring is a set R together with two binary operations, usually written + : R × R → R
and · : R×R→ R (or juxtaposition for the latter) such that

(i) R is an Abelian group under addition,
(ii) a · (r + s) = a · r + a · s for all a, r, s ∈ R, called left-distributivity,
(iii) (r + s) · a = r · a+ s · a for all a, r, s ∈ R, called right-distributivity,
(iv) · is associative, and
(v) there is an element 1 ∈ R such that 1 · r = r · 1 = r for all r ∈ R, called the

mulitplicative identity of R.

A commutative ring is a ring in which all elements of R commute with each other under
the multiplication of R. If this is the case then properties (ii) and (iii) in the definition
coincide (which will always be the case in this project!). A subring is, as one might
expect, a non-empty subset S of R such that S is a ring with the same addition and
multiplication as R.
An ideal of R is a non-empty subset a of R satisfying the following properties:

(i) if a, b ∈ a then a− b ∈ a, that is, a is an additive subgroup of R, and
(ii) if a ∈ a and r ∈ R then ra ∈ a.

A similar dichotomy between left and right ideals occurs in the context of non-commutative
rings, though this will not be an issue in this project.
An ideal generated by a single element a ∈ R will be denoted (a) (just as the subgroup
generated by an element is denoted (g) in the context of groups) and will be referred
to as a principal ideal. A ring in which every ideal is principal is called a principal ideal
ring.
When discussing divisibility of elements we write a | b and say “a divides b”. By this,
we mean that there is an element r ∈ R such that b = ra, as in Z. An element u ∈ R
is called a unit of R if there exists an element v ∈ R such that uv = 1; in other words,
u has a multiplicative inverse in R. The set of all such elements forms a group called
the group of units of R and is denoted R×. An element π ∈ R is called irreducible if
π = ab, for some a, b ∈ R, implies that a ∈ R× or b ∈ R×. An element p ∈ R is called
prime if p | ab implies p | a or p | b. In a principal ideal ring, such as Z, these properties
coincide, though they are distinct in general.
If a ∈ R is such that that a 6= 0 and there exists a non-zero b ∈ R such that ab = 0, we
call a a zero-divisor. A ring containing no zero-divisors is called an integral domain.

4Note that left-actions and right-actions do not coincide in general.
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This name combines with principal ideal ring to give principal ideal domain, meaning
a principal ideal ring which is also an integral domain.
A unique factorisation domain is an integral domain in which every element can be
written uniquely as a product of irreducible elements of the ring up to ordering and
multiplication by units.
A ring R is said to be Noetherian if all of its ideals satisfy the ascending chain condition.
That is, if ai ⊂ R are ideals such that there is an infinite ascending chain of ideals

a1 ⊆ a2 ⊆ · · · ⊆ an ⊆ . . .

then for some k we have ak = ak+1 = . . . for all subsequent ideals in the chain.
By ring homomorphism we mean a map ϕ : R → S such that ϕ(r + s) = ϕ(r) + ϕ(s)
and ϕ(rs) = ϕ(r)ϕ(s) for all r, s ∈ R, and such that ϕ(1R) = 1S. As usual, a ring
isomorphism is a ring homomorphism that is bijective.

Modules over a ring

By left R-module we shall mean an Abelian group M together an action · : R×M →M
of the ring R on M with

(i) r · (m+ n) = r ·m+ r · n, for all r ∈ R and m,n ∈M ,
(ii) (r + s) ·m = r ·m+ s ·m, for all r, s ∈ R and m ∈M ,
(iii) (rs) ·m = r · (s ·m) for all r, s ∈ R and m ∈M , and
(iv) 1R ·m = m.

Analogous properties hold for right R-modules. If we take R to be a field then this
coincides with the definition of vector space from linear algebra.
An R-submodule is a subgroup N of M which is closed under the action of R on N ,
that is, rn ∈ N for all r ∈ R and n ∈ N . In particular, N is a submodule of M if and
only if N 6= ∅ and n1 + rn2 ∈ N for all r ∈ R and n1, n2 ∈ N .
Every ring R is a module over itself, taking the multiplication of R as the R-action. In
this case, ideals and submodules coincide. If M is an R-module and N is a submodule
of M then we can make the quotient group M/N into an R-module by specifying the
R-action r(m+N) = rm+N for all r ∈ R and m ∈M (noting that m+N is an element
of M/N ).
If M1,M2 are R-modules then an R-module homomorphism is a map ϕ : M1 → M2

such that ϕ(m + n) = ϕ(m) + ϕ(n) and ϕ(rm) = rϕ(m) for all r ∈ R and m,n ∈
M1. As in the case of rings and groups, an R-module isomorphism is an R-module
homomorphism that is bijective.
An R-module M generated by the subset A of M is the R-module

RA =

{
m∑
i=1

riai : ri ∈ R, ai ∈ A

}
.

If A = {a1, . . . , an} is some finite subset of M then we write RA = Ra1 + · · · + Ran. A
submodule N of M is said to be finitely generated if a finite subset of M exists such
that N = Ra1 + · · ·+Ran. If N = M then M is said to be a finitely generated R-module.
The direct sum of R-modules M1 and M2, written M1⊕M2, is the direct sum of Abelian
groups with an R-action defined component-wise. A free R-module M is one that is
R-module isomorphic to a direct sum of copies of R. The number of copies of R is
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called the rank of M . If M is a free R-module of rank n then M possesses a basis,
say {e1, . . . , en} ⊆M such that every element x ∈M can be written uniquely as

x = r1e1 + · · ·+ rnen

with ri ∈ R.

1 Fields and Galois Theory
The majority of the focus in this project is on the study of finite degree field extensions
of Q and certain algebraic objects attached to, or contained within, them. As such, it
will be useful to first give a short exposition on the theory of fields. In addition, it will be
useful to study these extensions via the action of a group of automorphisms on them,
which is the objective of Galois theory. Much of the subject matter in this Section is
taken from exposition in [6], Chapters 13 and 14.

1.1 Field Theory
By field, we mean a set F together with an addition and a multiplication, such that F is
an Abelian group under the addition, and such that F \ {0} is an Abelian group under
the multiplication.

Definition 1.1. Let F be a field. The smallest positive integer p such that p · 1 = 0 is
called the characteristic of F , denoted ch(F ). If no such integer exists, we say that
the field has characteristic 0.

Since F is a field, we must have that ch(F ) is zero or prime. To see this, suppose that
n = ch(F ) but that n = k` with k 6= 1 and ` 6= 1. Then

n = (1 + 1 + · · ·+ 1︸ ︷︷ ︸
k times

)(1 + 1 + · · ·+ 1︸ ︷︷ ︸
` times

) = 0.

But F is a field and this would imply the existence of zero divisors. Hence, either k or `
(or both) is 0, or one of k and ` is equal to 1, and the other is equal to n, i.e. n is prime.
We may define for F the ring homomorphism ϕ : Z→ F by n 7→ n ·1. If ch(F ) = 0 then
kerϕ = {0}, so that ϕ is an injection of Z into F . Since F is a field, this means that F
contains a subfield isomorphic to Q. If ch(F ) = p then we have kerϕ = pZ, so by the
first isomorphism theorem for rings we have Z/pZ ∼= Imϕ ⊆ F , so that F contains a
subfield isomorphic to Z/pZ.

Definition 1.2. Let F be a field. A field extension of F is a field K containing F . We
write K/F (read K over F ) for the extension K where context requires it. We call F
the ground field of the extension.

Since K is itself a field containing F , it is an Abelian group. In addition, there is a
multiplication on K by elements of F that is compatible with the addition on K, and so
we can make K into an F -vector space by letting F act on K by scalar multiplication.

Definition 1.3. The degree of a field extension K/F , denoted [K : F ], is its dimension
as an F -vector space. We say K/F is an infinite extension if [K : F ] is infinite, and call
K/F finite otherwise.

We shall be most interested in this project in studying finite extensions of Q and of
finite fields by so-called algebraic elements.
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Definition 1.4. Let F be a field and F [X] the ring of polynomials with coefficients in F .
Let K be an extension of F . An element α ∈ K is said to be algebraic over F if there
exists a non-zero polynomial p(X) ∈ F [X] such that p(α) = 0.

Our first theorem guarantees the existence of a field K in which an irreducible polyno-
mial p(X) ∈ F [X] has a root. This shall be particularly important for us, since our main
study of extensions of Q shall be through adjoining algebraic numbers.

Theorem 1.1. Let F be a field and let p(X) ∈ F [X] be irreducible. Then there is a field
K = F [X]/(p(X)) containing F and in which p(X) has a root.

Proof. We use the fact that F [X] is a principal ideal domain to conclude that (p(X)) is
a maximal ideal in F [X], and hence F [X]/(p(X)) is a field, which we call K. Denote
by π : F [X] → K the projection sending f(X) to the coset f(X) + (p(X)). Then
the restriction of π to F gives a homomorphism π|F . Since π|F (1) = 1 + p(X) we
have that π|F is not identically zero. Thus, kerπ|F 6= F , and so we must have that
kerπ|F = {0}, that is, that π|F is an injection, so there is an isomorphic copy of F
inside K. We identify F with its image in K so that K is an extension of F . Denote by
X the image of X under π. Then, since π is a homomorphism, we have p(X) = p(X).
But p(X) = p(X) + (p(X)) = 0 + (p(X)), and so p(X) = 0 in K. Hence, K is an
extension of F containing a root X of p(X).

It was mentioned earlier that an extension K/F can be made into an F -vector space
by letting F act on K by scalar multiplication. Since every vector space has a basis, it
will be useful to know how such a basis looks.

Proposition 1.1. Let F be a field, p(X) ∈ F [X] a degree n irreducible polynomial, and
K = F [X]/(p(X)). Denote by α the image of X in K. Then {1, α, . . . , αn−1} is a basis
for K as an F -vector space. In particular, we have that [K : F ] = n and

K ∼= F (α) = {f0 + f1α + · · ·+ fn−1α
n−1 : fi ∈ F}.

Proof. Without loss of generality, we may assume that p(X) is monic, since F is a field.
Write p(X) = Xn + fn−1X

n−1 + · · · + f1X + f0. Since p(X) is irreducible, we have a
field K = F [X]/(p(X)) containing a root α of p(X), so that

αn + fn−1α
n−1 + · · ·+ f1α + f0 = 0

in K. Thus, since αn = −(fn−1α
n−1 + · · ·+ f1α+ f0), we may reduce any expression in

α with exponent higher than n to an expression in α with exponent less than or equal
to n− 1, so certainly {1, . . . , αn−1} spans K/F . Now suppose that {1, . . . , αn−1} is not
a linearly independent set, so that there exist a0, . . . , an−1 ∈ F , not all zero, such that

an−1α
n−1 + · · ·+ a1α + a0 = 0.

Then we have
an−1X

n−1 + · · ·+ a1X + a0 ≡ 0 mod p(X),

or equivalently that p(X) divides an−1X
n−1 + · · ·+ a1X + a0. But deg p(X) = n > n− 1

and such ai cannot exist unless ai = 0 for all i.
To show that K ∼= F (α), we note that there is a natural homomorphism ϕ : F [X] →
F (α) with X 7→ α which is clearly surjective, and whose kernel is the ideal generated
by the monic irreducible polynomial p(X). By the first isomorphism theorem, we have

F [X]/(p(X)) ∼= F (α).
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We shall call a field K = F (α) generated over another field F by a single algebraic
element α a simple extension.

Definition 1.5. Let F be a field and let K = F (α) where α is algebraic over F . The
minimal polynomial of α over F , denoted mα,F (X) ∈ F [X] is the unique monic irre-
ducible polynomial of smallest degree over F satisfied by α. We refer to the degree of
mα,F (X) as the degree of α over F .

Context permitting, we shall refer to mα,F (X) simply as m(X). In fact, it is not obvious
that such a polynomial exists, though we shall show that it does exist. Supposem(X) ∈
F [X] is a monic polynomial of smallest degree satisfied by α ∈ K and suppose there
exist non-constant f(X), g(X) ∈ F [X] such that m(X) = f(X)g(X). Then deg f and
deg g are both smaller than degm, and f(α)g(α) = 0 in K. But since K is a field we
must then have f(α) = 0 or g(α) = 0, contradicting the minimality of m(X). Suppose
now that there exists a polynomial f(X) ∈ F [X] such that f(α) = 0. By the Euclidean
algorithm, we have

f(X) = q(X)m(X) + r(X), deg r(X) < degm(X).

Since f(α) = 0, this forces r(α) = 0, and so m(X) | f(X). Thus, given any other
irreducible polynomial p(X) ∈ F [X] satisfied by α we have p(X) = km(X) where
k ∈ F , and so m(X) is the unique monic irreducible polynomial satisfied by α.

Example 1.1. Examples of field extensions that will feature frequently throughout the
project are so-called quadratic extensions, that is, extensions of degree 2. In particular,
we let F = Q and fix a square-free d ∈ Z. The polynomial X2 − d ∈ Q[X] is Eisenstein
with any prime p dividing d, and so the quotient Q[X]/(X2 − d) is a field K = Q(

√
d)

containing Q such that X2 − d has a root.

An element of C that is algebraic over Q is called an algebraic number. The title alge-
braic number theory may thus be interpreted both as the algebraic theory of numbers,
and as the theory of algebraic numbers.
A particularly useful property of field extensions is the multiplicativity of their degrees,
which we shall prove in the following theorem.

Theorem 1.2. Let L/K/F be a tower of extensions. Then [L : F ] = [L : K][K : F ].

Proof. Let [L : K] = m and [K : F ] = n and let {α1, . . . , αm} and {β1, . . . , βn} be bases
for L/K and K/F respectively. Let ` ∈ L. Then

` =
m∑
i=1

kiαi

with the ki ∈ K. In addition, for any of the ki we have

ki =
n∑
j=1

fijβj

for some fij ∈ F . Hence, we have

` =
m∑
i=1

n∑
j=1

fijαiβj.
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Thus, every element of L can be written as a linear combination of elements of the set
{α1β1, . . . , αiβj, . . . , αmβn} and so these span L as an F -vector space.
Suppose now that there is some linear dependence in this set. Then, defining the ki
as above, we would have

` =
m∑
i=1

kiαi = 0

and so all of the ki must be 0 since the αi are a basis for L over K. Thus, this induces
a linear dependence

ki =
n∑
j=1

fijβj = 0.

But the βj are a basis for K over F , and so this forces fij = 0 for all i and j, and so
{α1β1, . . . , αiβj, . . . , αmβn} is a basis for L as an F -vector space.
In conclusion, we have that [L : F ] = nm = [L : K][K : F ] as desired.

An interesting corollary of Theorem 1.2 is the lack of intermediate extensions between
extensions of prime degree. For instance, since Q(

√
2) has degree 2 over Q, we may

conclude that there are no extensions of Q lying between Q(
√

2) and Q. Furthermore,
Theorem 1.2 tells us that the only extensions lying between fields L and F are those
whose degree divides [L : F ].
Since we know that for any irreducible polynomial p(X) ∈ F [X] there is an extension of
F containing a root of K, we may ask the question whether there exists an extension
E of F containing all of the roots of p(X).

Definition 1.6. Let F be a field and let p(X) ∈ F [X] be irreducible. An extension E of
F is called a splitting field for p(X) if p(X) splits completely into linear factors in E,
and in any proper subfield of E, p(X) does not split.

Since F [X] is a principal ideal domain, it is a unique factorisation domain. If a polyno-
mial p(X) has a root α1 then X − α1 | p(X), and since linear factors are irreducible we
may conclude that a polynomial of degree n has at most n roots (counted with multi-
plicity). Thus, if E is a splitting field for an irreducible polynomial of degree n then that
polynomial has exactly n roots in E.

Theorem 1.3. Let F be a field and let p(X) ∈ F [X] be an irreducible polynomial of
degree n. Then there exists an extension E over F which is a splitting field for p(X).
Furthermore, [E : F ] ≤ n!.

Proof. We proceed by induction on the degree of p(X). If n = 1 then p(X) is linear and
so a root for p(X) lies in the ground field F , so we may assume that n > 1. By Theorem
1.1, we know that there exists an extension K1 over F that contains a root of p(X). The
extensionK1 contains at least one root of p(X), say α1, so that p(X) = (X−α1)f1(X) in
K1[X] with deg f1 ≤ n − 1, so that [K1 : F ] ≤ n. Thus, by induction, we may construct
a tower of field extensions F ⊂ K1 ⊂ · · · ⊂ Kn−1 ⊂ Kn = E such that in each
intermediate extension we have the factorisation p(X) = (X − α1) · · · (X − αi)fi(X)
with deg fi ≤ n − i and [Ki : F ] ≤ n(n − 1) · · · (n − i + 1). Thus, in the final extension
Kn we have

p(X) =
n∏
i=1

(X − αi).
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By multiplicativity of degrees, we have [E : F ] ≤ n!. Equality occurs if and only if every
root is distinct and the factor fi(X) is irreducible at every stage.

Consider the polynomial p(X) = X3 − 2. Then p(X) is irreducible by Eisenstein’s
criterion with prime 2, and so Q[X]/(p(X)) is a field containing a root of p(X). We
know that α1 = 3

√
2 is a root of p(X) so we might write K1 = Q(α1). Of course, we

also have the roots α2 = j 3
√

2 and α3 = j2 3
√

2 where j 6= 1 is a complex number such
that j3 = 1. Notice that every element of K1 is a real number, and so α2, α3 /∈ K1.
The problem is that the fields K1, Q(α2), and Q(α3) are isomorphic and so α1, α2, and
α3 are what we refer to as algebraically indistinguishable. We shall show that this is
always the case for distinct roots of an irreducible polynomial.

Proposition 1.2. Let F1 and F2 be fields and let p1(X) ∈ F1[X]. Suppose there is an
isomorphism ϕ : F1 → F2 of fields. Then ϕ induces a ring isomorphism ϕ̃ : F1[X] →
F2[X] and hence ifK1 = F1(α) is an extension of F1 containing the root α1 of p1(X) then
there is an extension K2 = F2(β), such that β is a root of the polynomial p2(X) ∈ F2[X],
obtained by applying ϕ̃ to p1(X) and such that K1

∼= K2.

Proof. Let ϕ : F1 → F2 be an isomorphism of fields and write

p1(X) = Xn + fn−1X
n−1 + · · ·+ f1X + f0 ∈ F1[X].

Applying ϕ to p1(X) requires us to specify the image of X under ϕ. Indeed, since ϕ is
a homomorphism, this gives

p2(X) = ϕ(X)n + ϕ(fn−1)ϕ(X)n−1 + · · ·+ ϕ(f1)ϕ(X) + ϕ(f0).

Thus if we specify that X 7→ X under ϕ we have an isomorphism of rings ϕ̃ : F1[X]→
F2[X].
If p1(X) is irreducible in F1 then the ideal (p1(X)) is a maximal ideal. We wish to show
that (p2(X)) = (ϕ̃(p1(X))) is a maximal ideal by showing that the image of p1(X) under
ϕ̃ is an irreducible polynomial. Suppose p2(X) is reducible. Then

p2(X) = a(X)b(X)

for some non-constant a(X), b(X) ∈ F2[X]. Since p2(X) = ϕ̃(p1(X)) we have

ϕ̃(p1(X)) = a(X)b(X) ⇐⇒ p1(X) = ϕ̃−1(a(X))ϕ̃−1(b(X))

and so p1(X) is reducible. By contraposition, if p1(X) is irreducible, then p2(X) is
irreducible. Thus (p2(X)) is a maximal ideal in F2[X]. Thus, we have a commutative
diagram

F1(α) F2(β)

F1[X] F2[X]

ψ̃

ϕ̃

π1 π2

where we have used Proposition 1.1 to write F1(α) = F1[X]/(p1(X)) and F2(β) =
F2[X]/(p2(X)). Thus in the diagram we have the canonical projections π1, π2, and an
isomorphism ψ̃ with ψ̃(α) = β (noting that, since F1(α) is generated over F1 by α, the
image of α under ψ̃ determines the map completely).
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We shall be interested in several corollaries of the above proposition. First, we note
that, in the notation of Proposition 1.2, taking ϕ to be the identity gives an isomor-
phism ψ̃ between any two fields generated by roots of the polynomial p1(X), resolv-
ing the problem we had with Q( 3

√
2), Q(j 3

√
2), and Q(j2 3

√
2). Furthermore, combining

Proposition 1.2 with Theorem 1.3 tells us that any two splitting fields for an irreducible
polynomial are isomorphic.
To conclude this section, we introduce two properties of field extensions that will be
particularly useful for us.

Definition 1.7. Let F be a field and let N be an extension of F with the property that
every irreducible polynomial with a root in N splits completely into linear factors over
N . Such an extension is called a normal extension of F .

Example 1.2. Let N = Q(
√

2). Then N is normal over Q since the minimal polynomial
of
√

2 is m(X) = X2− 2 and the two roots of m(X) are ±
√

2, both of which lie in N . An
example of an extension of Q that is not normal is Q( 3

√
2); the minimal polynomial of

3
√

2 over Q is X3 − 2, but we saw earlier that the other two roots, j 3
√

2 and j2 3
√

2, were
not elements of Q( 3

√
2) and so Q( 3

√
2) is not normal over Q.

Definition 1.8. Let F be a field and let p(X) ∈ F [X] be irreducible. We say that p(X) is
separable if p(X) has no multiple roots. An extension K of F is said to be a separable
extension if the minimal polynomial over F of every element of K is separable, and
the extension is called inseparable otherwise.

Our final theorem, from [14], will tell us when an extension is separable. Until now the
results we have quoted have been general, in the sense that they did not depend on
the characteristic of the fields discussed.

Theorem 1.4. Let F be a field and let K be an extension of F . If ch(K) = 0 then every
irreducible polynomial in F [X] is separable over K. If ch(K) = p then a polynomial
f(X) ∈ F [X] is separable over K if and only if f(X) is not a polynomial in Xp.

Proof. Let f(X) ∈ F [X] be irreducible. We first prove that f(X) is separable if and
only if it is coprime to its derivative. Suppose that f(X) is separable. Then there is
some α ∈ K such that f(X) = (X − α)g(X) with (X − α) - g(X). By the chain rule of
differentiation, we have

f ′(X) = g(X) + (X − α)g′(X).

Since f ′(α) = g(α) 6= 0, we have that f(X) and f ′(X) have no common roots, and
so they are coprime in K[X]. Suppose now that f(X) is inseparable. Without loss of
generality, we suppose that there is an α ∈ K with f(X) = (X − α)2g(X) such that
(X − α) - g(X). Then

f ′(X) = 2(X − α)g(X) + (X − α)2g′(X).

Since f(α) = f ′(α) = 0, the root α is common to f(X) and f ′(X), and so f(X) and
f ′(X) are not coprime. By contraposition, we have that if f(X) and f ′(X) are coprime,
then f(X) is separable.
Now, suppose f(X) is an inseparable irreducible polynomial in F [X]. Then, from
above, we have that f(X) and f ′(X) are not coprime. Since f(X) is irreducible, we
must have f(X) | f ′(X), but deg f ′ < deg f , and so this forces f ′(X) = 0. On the other
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hand, if f ′(X) = 0 then the greatest common divisor of f(X) and f ′(X) is f(X), and
so f(X) is separable by the previous argument. In both cases, contraposition gives us
that f(X) is separable if and only if f ′(X) 6= 0.
Finally, in a field of characteristic 0, a non-constant polynomial always has non-zero
derivative, and so every non-constant irreducible polynomial is separable. In a field of
characteristic p, a non-constant polynomial has non-zero derivative if and only if it is
not a polynomial in Xp, since if this were the case then every term of the derivative
would be divisible by p, and thus equal to 0.

Example 1.3. The procedure discussed above to construct splitting fields requires one
simply to successively adjoin roots of an irreducible polynomial to a field until a field E
is reached in which the given polynomial splits into linear factors. We shall do this with
the polynomial m(X) = X3 − 2 over Q and analyse the extensions we obtain.
By Eisenstein’s criterion with prime 2 we have thatm(X) is irreducible over Q. We know
that 3

√
2 is a root of m(X) so we adjoin this to Q to obtain K1 = Q( 3

√
2) and note that

[K1 : Q] = 3. By Theorem 1.3 we know that [E : Q] ≤ 3! and by Theorem 1.2 we know
that the degree of any further extension ofK1 must be 2. Indeed, if we factorX3−2 over
Q( 3
√

2) we have m(X) = (X − 3
√

2)(X2 + X 3
√

2 + 3
√

4). Set m1(X) := X2 + X 3
√

2 + 3
√

4
and notice that the discriminant of m1(X) is 3

√
4 − 4 3

√
4 < 0 so m1(X) has a pair of

conjugate complex roots. Since K1 ⊂ R, we know that no such root can lie in K1. Now,
we know that j 3

√
2 is a root of m(X), and so since (j 3

√
2)2 + (j 3

√
2) 3
√

2 + 3
√

4 = 0, we
have the extension E = Q( 3

√
2, j 3
√

2), which has degree 2 over K1 and hence degree 6
over Q, and is thus a splitting field of m(X) over Q. Clearly E ⊆ Q(j, 3

√
2), and since

j 3√2
3√2

= j ∈ E, we also have Q(j, 3
√

2) ⊆ E, and so we conclude finally that E = Q(j, 3
√

2)

is the splitting field for m(X).
We can now look at the intermediate extensions between Q and E, which are sum-
marised in the following diagram of subfields:

Q(j, 3
√

2)

Q( 3
√

2) Q(j 3
√

2) Q(j2 3
√

2) Q(j)

Q

2 2 2 3

3 3 3 2

where the numbers between each extension denote the degree of the extension. Each
of the extensions of degree 3 over Q is not normal, as we discussed above. The
degree 2 extension is normal, since the minimal polynomial of j over Q is X2 + X + 1
and the roots of this polynomial are j and j2 = −(j + 1), both of which lie in Q(j). The
multiplicativity of degrees discussed in Theorem 1.2 gives us a basis for Q(j, 3

√
2) as a

Q-vector space; namely, {1, 3
√

2, 3
√

4, j, j 3
√

2, j 3
√

4}, which we obtained simply by taking
bases for Q( 3

√
2) and Q(j) over Q and taking products of their elements (which was

the entire premise of Theorem 1.2).

1.2 Galois Theory
The main objective of Galois theory is to establish a correspondence between field ex-
tensions and certain groups of automorphisms attached to these extensions. In later
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Sections, we shall see that this correspondence allows us to easily study the behaviour
of prime ideals in special subrings of extensions of Q, as well as being generally use-
ful in studying towers of extensions. We begin by introducing the automorphisms of
interest.

Definition 1.9. Let F be a field and let K,K ′ be extensions of F . A field homomor-
phism σ : K → K ′ that fixes the ground field F point-wise is called an F -homomorphism.

The usual variants of homomorphism apply in this case, for instance, we shall be
mainly interested in studying F -automorphisms of an extension K of F . We denote by
Aut(K/F ) the group of F -automorphisms of K and note that this is a subgroup of the
group Aut(K) of all automorphisms of K; clearly id ∈ Aut(K/F ) so it is non-empty,
and if σ, τ ∈ Aut(K/F ) then since σ(F ) = τ(F ) = F we have τ−1 ◦ σ(F ) = F , so that
τ−1 ◦ σ ∈ Aut(K/F ).

Definition 1.10. Let H ≤ Aut(K/F ). The field KH := {x ∈ K : σ(x) = x for all σ ∈ H}
is called the fixed field of H.

As an example, we have the extension Q(
√

2,
√

3)/Q and a Q-automorphism σ such
that
√

2 7→
√

2 and
√

3 7→ −
√

3. Notice that σ2 = id so we have a subgroup

H1 = {id, σ} ≤ Aut(Q(
√

2,
√

3)/Q).

Since
√

2 is fixed by every element of H1, we have KH1 = Q(
√

2). Similarly, we
have a Q-automorphism τ with

√
2 7→ −

√
2 and

√
3 7→

√
3 so that H2 = {1, τ} ≤

Aut(Q(
√

2,
√

3)/Q) and a Q-automorphism στ sending both roots to their negatives
and so that there is a subgroup H3 = {1, στ} ≤ Aut(Q(

√
2,
√

3)/Q). We have KH2 =
Q(
√

3) and KH3 = Q(
√

6), and hence a lattice of subgroups

{id}

H1 H2 H3

Aut(Q(
√

2,
√

3)/Q)

2 2 2

2 2 2

.

Compare this with the diagram:

Q(
√

2,
√

3)

Q(
√

2) Q(
√

3) Q(
√

6)

Q

2 2 2

2 2 2

.

Both diagrams are exceptionally similar, with the only difference being that the inclu-
sions are reversed (that is, in the lattice of subgroups we have a “large” group at the
bottom of the diagram and a “small” group at the top of the diagram, while the opposite
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is true of the fields in the lattice of subfields). This is easy to see; let KH1 ⊂ KH2 be
the respective fixed fields of the groups H1 and H2. Any element σ ∈ H2 also fixes all
of KH1, so that σ ∈ H1, while the reverse is not true, and hence H2 ≤ H1. Conversely,
if H2 ≤ H1 have respective fixed fields KH2 and KH1 and if k ∈ KH1 then for any
σ ∈ H1 we have σ(k) = k, and since H2 ≤ H1, the same holds for any σ′ ∈ H2, so that
k ∈ KH2, and hence KH1 ⊂ KH2.

Proposition 1.3. Let F be a field and let E be a splitting field of an irreducible poly-
nomial p(X) ∈ F [X]. Then the F -automorphisms of E permute the roots of p(X). In
particular, we have

|Aut(E/F )| ≤ [E : F ]

with equality if and only if E is separable over F .

Proof. Suppose α ∈ E is a root of p(X). Then

p(α) = αn + fn−1α
n−1 + · · ·+ f1α + f0 = 0.

Since any σ ∈ Aut(E/F ) is an F -automorphism, we have

σ(p(α)) = σ(αn + fn−1α
n−1 + · · ·+ f1α + f0)

= σ(α)n + fn−1σ(α)n−1 + · · ·+ f1σ(α) + f0

= 0

so that σ(α) is another root of p(X) in E. This means that any F -automorphism of E
must send a root of an irreducible polynomial over F to another root, and so it follows
that the number of F -automorphisms of E is exactly the number of distinct roots of
p(X). Thus, we have |Aut(E/F )| ≤ [E : F ]. If p(X) is separable then [E : F ] = deg p =
|Aut(E/F )|.
Definition 1.11. Let F be a field and K a finite extension of F . We say that K is
Galois over F if |Aut(K/F )| = [K : F ]. In this case, we write Gal(K/F ) := Aut(K/F )
and call this the Galois group of K/F .

We now quote the main theorem of Galois theory, whose proof can be found in [6,
p.554]. This will provide us with a dictionary between subgroups of Galois groups and
intermediate field extensions, as was described at the start of the section.

Theorem 1.5. Let F be a field and let K be a Galois extension of F . Let E be the set
of subfields of K containing F and let G be the set of subgroups of Gal(K/F ). Then,

(i) there is a bijection ϕ : E → G, which is decreasing for the inclusion relation,
sending E ∈ E to the element H ∈ G that fixes E, while ϕ−1 : G → E sends an
element H ∈ G to the subfield KH of K fixed by H,

(ii) [K : E] = |H| and [E : F ] = [Gal(K/F ) : H],

(iii) K/E is always a Galois extension with Gal(K/E) = H,

(iv) E/F is Galois if and only if H E Gal(K/F ), in which case

Gal(E/F ) ∼= Gal(K/F )/Gal(K/E),

(v) if E/F is not Galois then Gal(K/E) 6E Gal(K/F ) by the previous property, but
even in this case we have Aut(E/F ) equal to the coset space Gal(K/F )/Gal(K/E).

Proof. Found in [6, p.554, 555, 556].
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1.2.1 Galois Theory of Finite Fields

Since in Theorem 1.5 we didn’t specify the characteristic of the fields under examina-
tion, the results also hold for finite fields, and so there is a Galois theory of finite fields.
Fortunately, the Galois groups of finite fields are especially easy to describe.

Proposition 1.4. Let m(X) ∈ Fp[X] be irreducible and suppose degm(X) = n. Then
Fp[X]/(m(X)) ∼= Fpn so that [Fpn : Fp] = n.

Proof. Since degm(X) = n, every element of the quotient is represented by a polyno-
mial of degree less than or equal to n− 1. Thus, we have

a0 + a1X + · · ·+ an−1X
n−1, ai ∈ Fp.

Since each coefficient is equal to one of the p elements of {0, . . . , p− 1} and there are
p such coefficients, the number of elements in the quotient is pn. For the same reason
that we discussed in Proposition 1.1, we have that [Fpn : Fp] = n. Finally, this is a field
because m(X) is irreducible, so that (m(X)) is a maximal ideal in Fp[X].

Proposition 1.5. Let p ∈ Z be prime and denote by Fpn a finite field of order pn. Then
Fpn is the splitting field of Xpn −X ∈ Fp[X].

Proof. By Fermat’s Little Theorem from elementary number theory, we have

ap ≡ a mod p

for all X ∈ Z, which is equivalent to ap−a = 0 in Fp. Since Fpn is a field of characteristic
p, this also holds in Fpn and so apn = (ap

n−1
)p ≡ a mod p for all a ∈ Z, and equivalently

ap
n−a = 0 for every element of Fpn. Hence Xpn−X splits completely into linear factors

over Fpn.

Since Fpn is the splitting field for Xpn − X ∈ Fp[X], it is a Galois extension, and so
|Gal(Fpn/Fp)| = n. In addition, we have a field homomorphism5

σ : Fpn → Fpn

with σ(a) = ap. Successively applying σ gives us σ ◦ σ(a) = (ap)p = ap
2 and so on.

Since apn = a, we have that σ has order n in Gal(Fpn/Fp) and so Gal(Fpn/Fp) ∼= Z/(n),
after observing that apk = a for all a ∈ Fpn cannot occur for any k < n, since apk −a = 0
has only pk < pn solutions. This automorphism is called the Frobenius automorphism
and is denoted Frobp.
We shall use these results in Section 5 to discuss the splitting properties of prime
ideals in Galois extensions of certain fields.

2 Number Fields
The majority of the project will be spent studying the arithmetic of so-called number
fields. We shall spend the first two Sections studying the structure of number fields
and their rings of integers, with the aim of applying the theory to the proof of Fermat’s
last theorem for regular primes. With this in mind, a good place to begin would be in
developing a definition of number field.

5It is perhaps non-obvious that this is a homomorphism until one considers that p is prime and so by
the so-called “Freshman’s dream” the map is additive. Multiplicativity is obvious.
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2.1 Number Fields
In this section we begin by defining number fields, and then introduce some useful
numerical invariants.

Definition 2.1. A number field is an extension of Q obtained by adjoining finitely many
algebraic numbers to Q.

As discussed in Section 1, quadratic number fields6 are particularly simple examples
of number fields obtained by adjoining the square root of a square-free integer to Q. In
general, one might be interested in how a field K embeds into an algebraically closed
field. In this case, we study how number fields embed into C.

Proposition 2.1. Let K be a number field of degree n over Q and, using the prim-
itive element theorem, let α ∈ C be an algebraic number such that K = Q(α). Let
p(X) ∈ Q[X] be the minimal polynomial of α over Q and let α = α1, α2, . . . , αn be the
conjugates of α. Then there are exactly n distinct field homomorphisms σk : K ↪→ C
such that σk(α) = αk.

Proof. By Proposition 1.2 from Section 1, each of the embeddings σk induces an iso-
morphism σk : Q(α) → Q(αk). Since there are exactly n conjugates of α, this proves
the proposition.

Each of the σk is referred to as a complex embedding of K into C, and if the image of
K under σk is contained in R then we refer to σk as a real embedding of K into R. The
fields Q(α) and Q(αk) are referred to as conjugate fields.

Definition 2.2. Let K be a number field of degree n over Q such that K = Q(α) for
some algebraic number α ∈ C. Let σk : K ↪→ C be the n distinct embeddings of K into
C. The discriminant of a set of elements θ1, . . . , θn ∈ K is the number

d(θ1, . . . , θn) :=

∣∣∣∣∣∣∣∣∣
σ1(θ1) σ2(θ1) · · · σn(θ1)
σ1(θ2) σ2(θ2) · · · σn(θ2)

...
... . . . ...

σ1(θn) σ2(θn) · · · σn(θn)

∣∣∣∣∣∣∣∣∣
2

.

Example 2.1. Let K = Q(
√

2) and consider the set {1,
√

2}. We have two embeddings
of K into C, namely id :

√
2 7→

√
2, and σ :

√
2 7→ −

√
2. Thus, the discriminant of the

set {1,
√

2} is

d(1,
√

2) =

∣∣∣∣1 √
2

1 −
√

2

∣∣∣∣2 = 8.

The main reason for introducing discriminants will become clear in Section 2.2 when
we introduce integral bases.

Definition 2.3. Let K be a number field of degree n over Q, let θ ∈ K, and let σk :
K ↪→ C be the n distinct embeddings of K into C. The norm of θ is the product

NK/Q(θ) =
n∏
k=1

σk(θ).

6We will often refer to these simply as quadratic fields, though in general a quadratic field is simply
an extension of degree 2 over the relevant ground field.
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If K/Q is Galois then this coincides with

NK/Q(θ) =
∏

σ∈Gal(K/Q)

σ(θ),

though in general a number field is not always a normal extension of Q. Take, for
example, the number field K = Q( 3

√
2). Then K is not a normal extension of Q, and in

fact there are no non-trivial Q-automorphisms of K, so that Aut(K/Q) = {id}. There
are, however, three embeddings of K into C; one real embedding and two complex
embeddings. Thus, the norm of the element 3

√
2 is

NK/Q(
3
√

2) = (
3
√

2)× (j
3
√

2)× (j2 3
√

2) = 2

where j is a primitive cube root of unity.
Another observation to make is that any embedding of a number field into C fixes Q,
and so NK/Q(a) = an if a ∈ Q.

Definition 2.4. Let K be a number field of degree n over Q, let θ ∈ K, and let σk :
K ↪→ C be the n distinct embeddings of K into C. The trace of θ is the sum

trK/Q(θ) =
n∑
k=1

σk(θ).

In the same way that NK/Q(θ) is a product running over the elements of Gal(K/Q)
when K is Galois, so too is trK/Q(θ) a sum over the elements of Gal(K/Q) when K
is Galois. Interestingly, the norm and trace of an element give elements of Q. To see
this, note that NK/Q(θ) is a product running over all possible embeddings of K into
C, and so the image of NK/Q(θ) under such an embedding must be NK/Q(θ), that is,
NK/Q(θ) is fixed by an embedding, and so must lie in Q. An identical argument applies
to trK/Q(θ), replacing every instance of the word “product” with “sum”.

2.2 Rings of Integers
In the same way that Z is an interesting subring of Q, in a more general number field
we are interested in the collections of integral elements over subrings of the field.

Definition 2.5. Let K be a field and let R be an integral domain contained in K. An
element k ∈ K is said to be integral over R if there exist ri ∈ R such that

kn + rn−1k
n−1 + · · ·+ r1k + r0 = 0.

The collection of elements of K that are integral over R is called the integral closure
of R in K.

Most of our efforts will be aimed at studying substructures of number fields, and so
applying Definition 2.5 to the case when K is a finite degree extension of Q gives us
the following interesting subring.

Definition 2.6. The integral closure of Z in a number field K is called the ring of
integers of K and is denoted OK .

That the set OK is a ring is a non-trivial statement which we will now prove following a
proof given in [5, p.27].
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Proposition 2.2. Let K be a field and R an integral domain contained in K. An ele-
ment α ∈ K is integral over R if and only if there exists a non-zero finitely generated
R-submodule of K, say M , such that αM ⊆M .

Proof. For the first direction, if α ∈ K is integral over R then there exist ri ∈ R such
that αn + rn1α

n−1 + · · ·+ r1α + r0 = 0, and so we have

αn = −(rn1α
n−1 + · · ·+ r1α + r0).

In particular, if we take the R-module M generated by {1, α, . . . , αn−1} then

M = R +Rα + · · ·+Rαn−1

and

αM = Rα +Rα2 + · · ·+Rαn

= Rα +Rα2 + · · ·+Rαn−1

⊆M.

For the second direction, we apply a ring theoretic analogue of Cramer’s rule from
linear algebra. Recalling this, let Ax = b be a system of linear equations with A = (aij)
an m×m matrix such that detA 6= 0, and x = (x1, . . . , xm)T a vector of variables. Then

xi =
detAi
detA

where Ai is the matrix whose ith column has been replaced with the column vector b.
Rewriting this as xi detA = detAi gives us a statement which can be utilised over any
ring. Returning to the proof, suppose M is a finitely generated non-zero R-module in
K such that αM ⊆ M (where α ∈ K) and suppose v1, . . . , vn are a set of generators
for M . Then for every i we have

αvi =
n∑
j=1

rijvj.

Rewriting this as a system of equations we have

(α− r11)v1 − r12v2 − · · · − r1nvn = 0

−r21v1 + (α− r22)v2 − · · · − r2nvn = 0

...
−rn1vn − rn2v2 − · · ·+ (α− rnn)vn = 0.

Let A be the matrix of coefficients on the left hand side of the above system, let v =
(v1, . . . , vn)T, and let b = (0, . . . , 0)T so that Av = b. Then Cramer’s rule says that
vi detA = 0. Since M is assumed to be a non-zero finitely generated R-module, at
least one of the vi is non-zero, and so we must have that detA = 0 (since we are
working in K, a field). Thus, upon expanding out the determinant of A, we have

αn + cn−1α
n−1 + · · ·+ c1α + c0 = 0

with the ci ∈ R, i.e. that α is integral over R.
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If we choose K to be a number field and R = Z then we obtain the statement for
rings of integers. The crucial logical step uses Proposition 2.2 to argue that for any
two elements α, β ∈ K that are integral over Z, there exist non-zero finitely generated
Z-submodules M,N of K such that αM ⊆M and βN ⊆ N . Now, define the set

MN =

{∑
i

mini : mi ∈M, ni ∈ N

}
.

It is easily shown that MN is a Z-module. In addition, if {m1, . . . ,mk} and {n1, . . . , nl}
are finite sets of generators forM andN respectively, then the set {m1n1, . . . ,minj, . . . ,mknl}
is a finite set of generators for MN , so it is finitely generated as a Z-module. Finally, if
α, β ∈ K are integral over Z then the Z-modules M and N generated by {1, . . . , αn−1}
and {1, . . . , βm−1} give us the Z-module

MN = Z + · · ·+ Zαiβj + · · ·+ Zαn−1βm−1.

That αβMN ⊆MN and (α± β)MN ⊆MN confirms that OK is a ring.

We now quote one of the most important properties of OK , coming from [6, p.670],
which will pave the way to developing several important structural invariants of OK , as
well as defining the most basic numerical invariant of a number field.

Theorem 2.1. Let K be a number field of degree n over Q. Then

(i) K is the field of fractions of OK ,

(ii) OK is Noetherian and is a free Z-module of rank n, and

(iii) given any basis {b1, . . . , bn} for K as a Q-vector space there is an integer d ∈ Z
such that {db1, . . . , dbn} is a basis for a free Z-submodule of OK with rank n. In
particular, any basis forOK as a free Z-module is also a basis forK as a Q-vector
space.

Proof. Found in [6, p.670].

Definition 2.7. Let K be a number field of degree n over Q with ring of integers OK .
A basis {b1, . . . , bn} for OK as a free Z-module is called an integral basis for K.

To finish this section, we define the discriminant of a number field, a numerical invariant
which will be of particular importance throughout the remainder of the project, and
relate this to the ring of integers of quadratic fields.

Definition 2.8. Let K be a number field of degree n over Q with ring of integers OK .
Fix an integral basis {b1, . . . , bn} for K and let σk : K ↪→ C be the n distinct embeddings
of K into C. The discriminant of K is the discriminant

dK := d(b1, . . . , bn) =

∣∣∣∣∣∣∣∣∣
σ1(b1) σ2(b1) · · · σn(b1)
σ1(b2) σ2(b2) · · · σn(b2)

...
... . . . ...

σ1(bn) σ2(bn) · · · σn(bn)

∣∣∣∣∣∣∣∣∣
2

.

In fact, we have a characterisation for the rings of integers of quadratic fields K based
on the discriminant of K.
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Proposition 2.3. Let K = Q(
√
d) with d ∈ Z square-free. Then

OK =

{
Z[
√
d] if d ≡ 2, 3 mod 4

Z
[

1+
√
d

2

]
if d ≡ 1 mod 4.

Proof. The inclusion

OK ⊇

{
Z[
√
d]

Z
[

1+
√
d

2

]
is clear; in the first case, X2− d is an integer polynomial satisfied by

√
d, and so every

element of Z[
√
d] is an algebraic integer. In the second case, since d ≡ 1 mod 4, we

have that X2 −X + (1− d)/4 is an integer polynomial satisfied by (1 +
√
d)/2.

The reverse inclusion requires a touch more effort. Every element α ∈ K can be
written α = a + b

√
d with a, b ∈ Q. Suppose that α ∈ OK . If b = 0 then α ∈ Q and

so a ∈ Z (we knew that Z ⊆ OK anyway). More interesting is the case when b 6= 0.
First we need to find the minimal polynomial of α over Z. We do this by taking linear
combinations of successive powers of α and taking the first linear combination that
provides a Q-linear dependence of the powers of α. Indeed, α2 = a2 + 2ab

√
d+ b2 so

α2 − 2aα + (a2 − b2d) = 0. (1)

Note that since α was assumed to be an algebraic integer and (1) is its minimal poly-
nomial, this means that 2a and a2 − b2d are rational integers. Now clearly 4(a2 − b2d)
is an integer, and so it follows that 4b2d ∈ Z. Since d was assumed square-free, it
follows that 2b ∈ Z. We now know that 2a, 2b ∈ Z, so let a = x/2 and b = y/2 for
some x, y ∈ Z. Then x2− y2d ≡ 0 mod 4 by the way x and y were chosen. This means
in particular that x2 ≡ y2d mod 4 so that y2d is a square modulo 4. The only squares
modulo 4 are 0 and 1, so we have either that y2d ≡ 0 mod 4 or that y2d ≡ 1 mod 4.
In the first case, since 4 - d, we must have y2 ≡ 0 mod 4, and so both x and y must
be even and d ≡ 1, 2, or 3 mod 4. In the second case, we have y2d − 4u = 1, with
u ∈ Z. If y is even then this equation has no integral solutions, so y must be odd. Let
y = 2v + 1, with v ∈ Z. Then y2 = 4v2 + 4v + 1, and so d ≡ 1 mod 4. Since this means
that x2 ≡ y2 mod 4 and y2 ≡ 1 mod 4, we also have that x is odd. In summary, we have

(i) d ≡ 2, 3 mod 4 and x, y are both even;
(ii) d ≡ 1 mod 4 and x, y are either both even or both odd.

In case (i), both a and b are integers and so α ∈ Z[
√
d]. In case (ii), we may write

a+ b
√
d = r + s(1 +

√
d)/2, with r = (x− y)/2 and s = y, so that α ∈ Z

[
1+
√
d

2

]
. In both

cases, this shows that the desired inclusion holds.

3 Dedekind Domains
We showed in the previous Section that the ring OK has the property of being Noethe-
rian, and that OK is integrally closed in its field of fractions K. We now show that every
non-zero prime ideal in OK is maximal. To do so, we shall require a few lemmas. The
first lemma was proven as part of an exercise in [3].
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Lemma 3.1. Let K be a number field of degree n and let OK be its ring of integers.
For a non-zero rational integer a we have

OK/aOK ∼= (Z/aZ)n

as Z-modules.

Proof. Recall thatOK is a free Z-module of rank n, so that it has a basis, say {b1, . . . , bn},
ensuring that every element α ∈ OK has a unique representation as a Z-linear combi-
nation of the bi. Let aOK ⊂ OK be the ideal in OK generated by the rational integer a
and let α = c1b1 + · · · + cnbn where ci ∈ Z for all i. Then a | α if and only if a | ci for all
i. To see this, suppose α = ar with r ∈ OK . Then r has a unique representation as a
Z-linear combination of the bi, say r = d1b1 + · · · + dnbn. We bring ar to the left hand
side so that

c1b1 + c2b2 + · · ·+ cnbn − ad1b1 − ad2b2 − · · · − adnbn = 0.

After “collecting like terms” and invoking the linear independence of the bi as basis
elements, we have that ci − adi = 0 for all i = 1, . . . , n, and hence that a | ci for all i.
This is particularly useful, because this means that α ∈ aOK only if ci ∈ aOK for all i,
and hence, in the quotientOK/aOK , we have that c1b1+· · ·+cnbn+aOK = 0+aOK only
if ci + aOK = 0 + aOK for all i. Equivalently, we have a Z/aZ-linearly independent set
{b1 +aOK , . . . , bn+aOK}. Finally, that these span OK/aOK comes from the surjectivity
of the natural projection homomorphism OK → OK/aOK that sends α 7→ α + aOK .
Hence OK/aOK ∼= (Z/aZ)n as asserted.

Since we have just seen thatOK/aOK is isomorphic to a finitely generated free module
over a finite ring, it has finite cardinality. We use this to show that OK/I has finite
cardinality for any non-zero ideal I ⊆ OK .

Lemma 3.2. Let K be a number field of degree n and let OK be its ring of integers.
For any non-zero ideal I ⊆ OK , the quotient OK/I is finite.

Proof. Every ideal I ⊆ OK contains a non-zero rational integer. To see this, note that
OK consists of all elements of K that are integral over Z. Let α ∈ I be non-zero and
let f(X) ∈ Z[X] be the minimal polynomial of α over Z. Then clearly α | f(α) − f(0)
and since f(α) = 0, we have a non-zero integer −f(0) ∈ I ∩ Z. Let a be a non-zero
rational integer in I. Then we have the sequence of inclusions aOK ⊆ I ⊆ OK . By the
third isomorphism theorem,

OK/aOK
I/aOK

∼= OK/I.

In Lemma 3.1 we showed that OK/aOK was finite. Hence, since I/aOK is an ideal of
OK/aOK , the quotient OK/I is finite.

The first theorem of this Section comes as a simple corollary of Lemma 3.2.

Theorem 3.1. Let K be a number field and let p ⊂ OK be a non-zero prime ideal in its
ring of integers. Then p is a maximal ideal.

Proof. By Lemma 3.2, we have that OK/p is finite. Since p is a prime ideal, this means
that OK/p is a finite integral domain, but finite integral domains are fields, and OK/p is
a field if and only if p is maximal.
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The properties of OK that we have built up until now are those of so-called Dedekind
domains.

Definition 3.1. A Dedekind domain is an integral domain D satisfying the following
properties:

(i) D is a Noetherian domain,
(ii) D is integrally closed in its field of fractions, that is, if α ∈ K is integral over D

then α ∈ D, and
(iii) every non-zero prime ideal of D is a maximal ideal.

If K is a number field then, as we have shown, OK is always a Dedekind domain.
There are examples of rings which appear at first sight to be the ring of integers of a
number field, but which are in fact not, and we can use the characterisation of rings of
integers as Dedekind domains to prove that they are not, as in the following example.

Example 3.1. Let K = Q(
√

5) and let D = Z[
√

5]. One might naı̈vely assume that
D = OK . Property (ii) of Definition 3.1 says that OK is integrally closed, meaning that
an element α ∈ K that satisfies a monic polynomial over OK is in fact an element of
OK . It’s easy to find an element of K that violates this property for D; let α = 1+

√
5

2
.

Then α2 − α− 1 = 0, but α /∈ D, so D cannot be the ring of integers of K.

The introduction of Dedekind domains begs the following question; why does it matter
that OK has these seemingly arbitrary properties? Indeed, for the most part, the mo-
tivation for their introduction seems somewhat unfounded, with the only reason being
that OK might be interesting for studying properties of integers by analogy. Fortu-
nately, there is a much more important reason for introducing Dedekind domains. In
the integers, we have the Fundamental Theorem of Arithmetic. That is, every integer
can be written uniquely as a product of prime numbers up to ordering, or equivalently,
into a unique product of irreducibles up to ordering. Does a similar property hold in
general? Unfortunately, the answer is no, and counter-examples are disconcertingly
easy to find. In the ring Z[

√
−5] we have 9 = 32 = (2 +

√
−5)(2 −

√
−5). Each of

these factors is irreducible; since N(3) = 9 = N(α)N(β) we only have the possibilities
N(α) = 1, 3, 9. If N(α) = 1 then α is a unit so this doesn’t help. There is no element of
norm 3 in Z[

√
−5] since this would correspond to an integer solution to a2+5b2 = 3, and

if N(α) = 9 then β must be a unit. The same argument applies to both 2 +
√
−5 and

2−
√
−5, and so we have found two distinct factorisations into irreducibles of Z[

√
−5].

Notice that we have been careful to refer to these as factorisations into irreducibles. In
general, the definitions of prime and irreducible are distinct, though they coincide in Z
since Z is a unique factorisation domain. In the example given above, (2 +

√
−5) | 9

but (2 +
√
−5) - 3.

The failure of this property to hold in general rings of integers was the Achilles’ heel
in Lamé’s proposed proof of Fermat’s Last Theorem. According to [2, p.76-77], Lamé
had announced to the Paris Academy a proof of Fermat’s Last Theorem based on the
factorisation

xn + yn = (x+ y)(x+ ry) . . . (x+ rn−1y)

with r 6= 1 a complex number such that rn = 1 (and, of course, n 6= 2) . He made the
claim that
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... if x and y are such that the factors x+y, x+ry, . . . , x+rn−1y are relatively
prime then xn + yn = zn implies that each of the factors x + y, x + ry, . . .
must itself be an nth power.

Liouville lacked the same enthusiasm that Lamé had for his proposed proof and was
quick to point out that Lamé was making some bold assumptions about the factorisa-
tion of complex numbers. It was not until around 2 months later that Liouville was able
to confirm to the Academy that Kummer had written to him from Wrocław, and that the
content of the letter was damning for Lamé’s proof. It was indeed the case that Lamé
had erroneously been assuming unique factorisation, and this led his proof to break
down.
How do we get around this? The answer is exactly the reason we introduced Dedekind
domains; unique factorisation at the level of elements may fail, but in a Dedekind
domain, unique factorisation is restored at the level of ideals.

3.1 Unique Prime Factorisation
In order to study the factorisation of an ideal into a product of prime ideals, we shall
make some local arguments about the rings of interest. In particular, this means taking
a short detour into commutative algebra to construct local rings and discrete valuation
rings. What follows is taken from exposition in [6, §15.4].

Proposition 3.1. Let R be a commutative ring with unity and let D be a multiplicatively
closed subset of R containing 1. Then there is a commutative ring D−1R and a ring
homomorphism π : R → D−1R satisfying the following universal property: for any
homomorphism ψ : R→ S of commutative rings sending 1 to 1 such that ψ(d) is a unit
in S for every d ∈ D there is a unique homomorphism Ψ : D−1R → S that makes the
following diagram commute:

R D−1R

S

π

ψ
Ψ

Proof. First we define an equivalence relation on R×D as follows: (r, d) ∼ (s, e) if and
only if there exists an x ∈ D such that x(er − ds) = 0. This is clearly reflexive; any
x ∈ D will do for this. It is also symmetric, since if such an x exists then there exists
a y ∈ D such that y(ds − er) = 0, namely y = −x. For transitivity, we suppose that
(r, d) ∼ (s, e) and (s, e) ∼ (t, f), so that x(er − ds) = 0 and y(fs − et) = 0 for some
x, y ∈ D. Then, multiplying the first of these by fy, the second by dx, and adding, we
obtain

fxy(er − ds) + dxy(fs− et) = xy(fer − fds+ fds− det)
= exy(fr − dt)
= 0.

Since D was assumed to be multiplicatively closed, exy ∈ D and so (r, d) ∼ (t, f).
We denote byD−1R the quotient set (R×D)/ ∼ and write r/d for the equivalence class
of a pair (r, d). The addition and multiplication are easily shown to be well-defined, and
they make D−1R into a commutative ring with 1 = 1/1, and every d ∈ D becomes a
unit in d/1 ∈ D−1R. Define the ring homomorphism π : R → D−1R by π(r) = r/1
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and suppose that ψ : R → S is a homomorphism of rings sending 1 to 1 such that
ψ(d) is a unit in S for every d ∈ D. Define Ψ : D−1R → S by Ψ(r/d) = ψ(r)ψ(d)−1.
This map is well-defined since if r/d = s/e then x(er − ds) = 0 for some x ∈ D
and so ψ(x)(ψ(er) − ψ(ds)) = 0 and so ψ(r)ψ(d)−1 = ψ(s)ψ(e)−1 (ψ(x) is a unit and
0 · ψ(x)−1 = 0). Hence, it follows that Ψ is a ring homomorphism and that Ψ ◦ π = ψ.
To show that Ψ is unique, suppose that Ψ′ is another ring homomorphism with Ψ′ ◦π =
ψ. Let x = r/d ∈ D−1R. Then (d/1)x = r/1 and hence π(d)x = π(r). Precomposing
with Ψ we have Ψ ◦ π(d)Ψ(x) = Ψ ◦ π(r) and hence ψ(d)Ψ(x) = ψ(r). In the same way
we can obtain ψ(d)Ψ′(x) = ψ(r), and so we have that ψ(d)Ψ(x) = ψ(d)Ψ′(x). Since
d ∈ D, ψ(d) is a unit in S and so can be inverted, giving us that Ψ(x) = Ψ′(x). As
x ∈ D−1R was arbitrary, this shows that Ψ was unique to begin with.

The ring D−1R we constructed above is called the ring of fractions of R with respect
to D, or alternatively the localisation of R at D. It is necessary to specify the D under
consideration, since in general there is more than one multiplicatively closed subset
of a ring R. In fact, for the purposes of this document, the D under consideration will
always be the complement of a prime ideal in R.

Definition 3.2. A local ring is a ring with a unique maximal ideal.

Suppose R is a ring with a prime ideal p. Let D = R \ p. Then the ring Rp := D−1R is a
local ring with the unique maximal ideal pRp. In passing from R to Rp we discard a lot
of structure; the construction ensures that every element of R that is not in p becomes
a unit, and this gives us a way to focus in on p, hence the name local ring.

Example 3.2. Let R = Z and let D = Z \ (p), with p a rational prime. The localisation
of Z at (p), denoted Z(p), is comprised of all elements of Q of the form

Z(p) =
{a
b
∈ Q : p - b

}
.

Note that since (p) is a prime ideal, if r /∈ (p) and s /∈ (p) then rs /∈ (p), and so D is
multiplicatively closed. In addition, the ideal (p)Z(p) is the unique maximal ideal in Z(p),
and the quotient Z(p)/(p)Z(p) is a field of characteristic p, isomorphic to Z/(p).

Having defined a local ring and given a way to construct them, we define discrete
valuation rings following the rather condensed discussion given in [5, p.45]. Their
uncomplicated ideal structure will give us what we need to show that ideals in Dedekind
domains factorise uniquely into products of prime ideals.

Definition 3.3. A discrete valuation ring is a local principal ideal domain which is not
a field. Equivalently, a discrete valuation ring has a unique non-zero prime ideal. Since
a discrete valuation ring is a principal ideal domain, this means that there is exactly
one prime element, up to associates.

Example 3.2 was an example of a discrete valuation ring; the unique non-zero prime
ideal is (p)Z(p) and is generated by the element unique prime element p.
The utility in introducing discrete valuation rings is, as mentioned above, their uncom-
plicated ideal structure. This is reflected in the following proposition from [5, p.46]:

Proposition 3.2. An integral domain A is a discrete valuation ring if and only if

(i) A is Noetherian,
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(ii) A is integrally closed, and
(iii) A has exactly one non-zero prime ideal.

Proof. If A is a discrete valuation ring then A is an integral domain by definition so we
need only prove one direction.
Suppose then that A is an integral domain satisfying the three conditions above. First
we show that every ideal of A is principal. Let c be a non-zero, non-unit element of A
and let M := A/(c). For every non-zero m ∈M we have the annihilator ideal

Ann(m) = {a ∈ A : am = 0}.

By property (i), A is Noetherian, and so we can choose m ∈M to be such that Ann(m)
is maximal among all such ideals. Let m = b + (c) for some b ∈ A and write p =
Ann(b+ (c)). Note that ab+ (c) = 0 + (c) when c | ab, so p = {a ∈ A : c | ab}. We show
that p is a prime ideal (hence the notation). Suppose not, and let x, y ∈ A such that
xy ∈ p but x /∈ p and y /∈ p. Then yb + (c) is non-zero in M since y /∈ p. Now consider
the ideal Ann(yb + (c)). This ideal is the set of a ∈ A such that c | ayb, and so taking
y = 1 gives the ideal p. In particular, this means that p ⊂ Ann(yb + (c)), contradicting
the maximality of p, and so p must be prime. We claim now that p = (cb−1). Firstly,
we cannot have bc−1 ∈ A, since if this were the case then b = c · bc−1 ∈ (c) and so
m = b + (c) = 0 + (c) in M . By the way p was defined, we have pb ⊆ (c), and so
pbc−1 ⊆ A and pbc−1 is an ideal. If pbc−1 ⊆ p then bc−1 would be integral over A, since
p is a finitely generated A-module (being that it is an ideal in a Noetherian ring) and
Proposition 2.2 guarantees that bc−1 is integral over A. However, if bc−1 is integral over
A then property (ii) says that bc−1 ∈ A, which we know is untrue, so p ( pbc−1 ⊆ A,
and since p is maximal, we have that pbc−1 = A. In other words, we have p = (cb−1)
Finally, we show that this implies that every ideal is principal. Let π = cb−1, so that
p = (π). Let a ( A be an ideal and consider the sequence of inclusions

a ⊂ aπ−1 ⊂ aπ−2 ⊂ . . .

If there is some r for which aπ−r = aπ−r−1 then π−1(aπ−r) = aπ−r, and by Proposition
2.2 once again, we have that π−1 is integral over A and so π−1 ∈ A, but of course
π−1 = bc−1 /∈ A, so the sequence of inclusions is a strictly increasing sequence. Since
A is Noetherian, this cannot be completely contained in A. Let m be the smallest
integer such that aπ−m ⊆ A but aπ−m−1 6⊆ A. Then aπ−m 6⊆ p, since if this were the
case then π−1aπ−m = aπ−m−1 ⊂ π−1p = A, a possibility we excluded in the way we
chose m. Hence, we must have aπ−m = A, and so a = (πm). Since a was arbitrary, we
have that A is a principal ideal domain.
To conclude, since A has been shown to be a principal ideal domain with a unique
non-zero prime ideal, we have that A is a discrete valuation ring.

In light of the above discussion, we are now able to introduce the main property of
Dedekind domains that we are interested in.

Theorem 3.2. Let D be a Dedekind domain. Then every proper non-zero ideal a ⊂ D
can be written

a = pr11 pr22 . . . prnn

where the pi are distinct non-zero prime ideals of D and the ri ∈ N are uniquely
determined.
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We shall need a few lemmas in order to prove the statement.

Lemma 3.3. Let D be a Noetherian ring. Then every non-zero ideal a of D contains a
product of non-zero prime ideals.

Proof. Suppose to the contrary that there exists a non-zero ideal a that does not con-
tain a product of prime ideals, and choose a to be maximal among such counterexam-
ples. Then a is, of course, itself not prime, so there exist x, y ∈ D such that xy ∈ a
but x /∈ a and y /∈ a. Now a ⊂ a + (x) and a ⊂ a + (y), but the product of a + (x)
and a + (y) is contained in a. Since a was chosen to be a maximal counterexample
to the statement, it must be that a + (x) and a + (y) contain products of prime ideals,
but then so, too, does their product, and so it follows that a must contain a product of
prime ideals. Hence there exists no non-zero ideal a that does not contain a product
of non-zero prime ideals.

Lemma 3.4. Let D be a ring and let a and b be coprime ideals in D. For all m,n ∈ N,
the ideals am and bn are coprime.

Proof. Suppose, to the contrary, am and bn are not coprime. Then am + bn 6= D so
am + bn ⊂ p for some maximal (hence prime) ideal p. As such, we have am ⊂ p and
bn ⊂ p, but since p is prime this implies that a ⊂ p and b ⊂ p, a contradiction.

Lemma 3.5. Let D be an integral domain with a maximal ideal p. Let q be the ideal
generated by p in the localisation Dp of D at p (that is, q = pDp). Then the map

ϕ : D/pm → Dp/q
m, m ∈ N

sending a+ pm to a+ qm is an isomorphism for all m ∈ N.

Proof. First we show that the map is injective. To do this, we show that the kernel
of ϕ is pm. This is equivalent to showing that qm ∩ D = pm. Since Dp = S−1D, with
S−1 = D \ p, we have to show that (S−1pm) ∩ D = pm. Given an arbitrary element
a ∈ (S−1pm) ∩D we can write a = b/s with b ∈ pm, s ∈ S, and a ∈ D. But then sa = b,
and so sa ∈ pm, which in turn means that sa = 0 in D/pm. The only maximal ideal
containing pm is p, so the only maximal ideal of D/pm is p/pm, and so D/pm is a local
ring. Now, since s ∈ S = D \ p, we have that s + pm /∈ p/pm, and so s + pm is a unit in
D/pm. Hence, sa = 0 in D/pm implies that a = 0 in D/pm and hence that a ∈ pm. The
arbitrariness of a allows us to conclude that pm = qm ∩D, and so ϕ is injective.
To prove that ϕ is surjective, we take an element as−1 ∈ Dp. Since s /∈ p, we have
p ⊂ (s) + p ⊆ D and since p is maximal, we have (s) + p = D, that is, (s) and p are
coprime. Hence, there exist b ∈ D and q ∈ pm such that bs + q = 1, and so b 7→ s−1 in
Dp/q

m and ba 7→ as−1 under ϕ. Since for any a ∈ D we have an image under ϕ, the
result is proven.

We now have what we need to prove that every non-zero ideal in a Dedekind domain
factors uniquely into a product of prime ideals. Let D be a Dedekind domain and let
a be a non-zero ideal. By Lemma 3.3 we have that every non-zero ideal contains
a product of prime ideals. Let b be this product, so that b ⊂ a and b = pr11 . . . prmm .
Supposing that the pi are distinct, we have that

D/b ∼=
m∏
i=1

D/prii
∼=

m∏
i=1

Dpi/q
ri
i
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where qi = piDpi is the unique maximal ideal of Dpi as given in Lemma 3.5. The first
isomorphism follows from the Chinese Remainder Theorem, since the pi are pairwise
distinct, and coprime by Lemma 3.4. The second isomorphism follows from Lemma
3.5. Now we consider the ideal a ⊂ D. Since b = pr11 . . . prmm ⊂ a, in the quotient D/b
we have

a/b ∼=
m∏
i=1

a/prii
∼=

m∏
i=1

a/qrii

where, in the second isomorphism, a is considered as an ideal of the local ring Dpi for
each i. Now, since the Dpi are local rings, they are discrete valuation rings, and so
any ideal of Dpi has the form a = qsii where qi = piDpi as in Lemma 3.5. In the second
isomorphism above, we then have

m∏
i=1

a/qrii
∼=

m∏
i=1

qsii /q
ri
i

for some si ≤ ri. In particular, under this isomorphism, this is also the image of
a product of prime ideals ps11 . . . psmm ⊂ D, so that a = ps11 . . . psmm in D/b. Finally,
since there is a one-to-one correspondence between ideals of D/b and ideals of D
containing b, we have that a = ps11 . . . psmm in D. For the uniqueness, note that if
a = ps11 . . . psmm = pt11 . . . p

tm
m then si = ti for all i, since in the above proof we showed

that qsii = aDpi = qtii .

Thus, we see that, while a ring may not possess unique factorisation of elements, if
that ring is a Dedekind domain, it always possesses unique factorisation of ideals. We
revisit our example in the previous section.

Example 3.3. Let D = Z[
√
−5]. We saw in the first section that 9 = 32 = (2 +√

−5)(2−
√
−5) and that each of these numbers was prime, so that unique factorisation

in Z[
√
−5] fails. Now we consider the ideal (9) ⊂ Z[

√
−5]. Immediately, we may write

(9) = (3)2 but note that (3) is not a prime ideal in Z[
√
−5]. In fact, the ideal (3) factorises

as (3) = (3, 1+
√
−5)(3, 1−

√
−5), and each of these is a prime ideal since, for example

Z[
√
−5]/(3, 1 +

√
−5) ∼= Z[X]/(3, 1 +X) ∼= F3

which is an integral domain. We write p1 = (3, 1 +
√
−5) and p2 = (3, 1 −

√
−5). Then

9 = p2
1p

2
2. We can see that (2 −

√
−5) = p2

1 and (2 +
√
−5) = p2

2, so the factorisation
(9) = (p1p2)(p1p2) = p2

1p
2
2 is unique.

3.2 Factorisation in Number Fields
In the last section we saw that every ideal in a Dedekind domain factorises uniquely
into a product of prime ideals. In the same way that we have divisibility for elements
of rings, we also have a concept of divisibility for ideals. If a is an ideal in a Dedekind
domain with prime ideal factorisation a = pe11 . . . p

eg
g then we say that the peii are divisors

of a and write peii | a in analogy with the notation we have for elements. In the context
of number fields and their rings of integers, we wish to study the splitting properties of
primes in extensions of Q. In the previous section, we saw that (3) ⊂ Z[

√
−5] was not

a prime ideal, but that it split into the product (3) = (3, 1 +
√
−5)(3, 1 −

√
−5) and that

each of these was a prime ideal. We call this property splitting, which we discuss now
along with other important properties such as ramification and inertia. The following
definitions come from [3, ch.10].
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Definition 3.4. Let K be a number field and OK its ring of integers. Let p be a prime
ideal in Z. Since OK is a Dedekind domain, the ideal pOK can be written

pOK = Pe1
1 . . .Peg

g

where each of the Pi is a prime ideal in OK . The primes Pi are called primes lying
above p (or equivalently that p lies below the Pi.) We say that p ramifies in OK if any
of the ei is greater than 1. If ei = 1 for all i then p is said to be unramified. For each
of the Pi the index ei is called the ramification index of Pi and the number g is called
the decomposition number of the prime p in OK . If g = 1 there is a single prime ideal
with ramification index e. If, in addition, e = 1 then we say that p is inert in OK . Finally,
if ei = 1 for all i and g = [K : Q], we say that p splits completely in OK .

The primes Pi uniquely determine the prime p above which they lie. If p ⊂ Z is a
prime ideal then p = (p). If there were another prime ideal (q) lying below the Pi then
(p) ⊆ Pi and (q) ⊆ Pi so that (p, q) ⊆ Pi, which is impossible, since, as p and q are
prime, the ideals (p) and (q) are coprime, so that (p, q) = (p) + (q) = OK .

Definition 3.5. Let K be a number field and OK its ring of integers. Let I be an ideal
in OK . The norm of I is defined as N(I) = |OK/I|, which is a natural number by
Lemma 3.2.

We saw at the beginning of the Section that OK/Pi is a finite field of characteristic p
(when Pi is a prime ideal, of course). Recall from Lemma 3.1 thatOK/pOK ∼= (Z/pZ)n,
where n = [K : Q], so that N(pOK) = pn. Now let Pi ⊇ pOK be a prime lying above
p. Since OK is a free Z-module of rank n = [K : Q] and Z is a principal ideal domain,
Pi is a free Z-submodule of OK and has rank less than or equal to n, say m, so that
|Pi/pOK | = pm, and hence, by Lemma 3.2,

OK/Pi
∼=

(Z/pZ)n

(Z/pZ)m
∼= (Z/pZ)fi

where fi = n −m. To complete Definition 3.4, we define the positive integer fi as the
inertial degree of the prime Pi in OK . It is the degree of the field extension [OK/Pi :
Z/pZ], so that if fi = 1, we have OK/Pi

∼= Z/pZ.
The splitting behaviour of primes in number fields is controlled by these properties, as
can be seen in the following theorem from [5, p.58]. The theorem is proven for general
field extensions, and can be specialised to the case of number fields.

Theorem 3.3. Let K be a number field of degree n, let p be a rational prime and
suppose pOK has the factorisation

pOK = Pe1
1 . . .Peg

g .

Then
e1f1 + e2f2 + · · ·+ egfg = n,

where the ei and fi are respectively the ramification indices and inertial degrees of the
primes Pi.
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Proof. From Lemma 2.2., we have that OK/pOK ∼= (Z/pZ)n, so that OK/pOK is an n-
dimensional vector space over Z/pZ. Additionally, by the Chinese remainder theorem,
we have that

OK/pOK ∼=
g⊕
i=1

OK/Pei
i ,

so that

(Z/pZ)n ∼=
g⊕
i=1

OK/Pei
i

as Z/pZ-vector spaces. Finally, since [OK : I] = N(I) for ideals I ⊂ OK , and since
the norm of an ideal is multiplicative, we have that [OK : Pei

i ] = [OK : Pi]
ei = peifi by

definition, showing that each of the summands OK/Pei
i is an eifi-dimensional Z/pZ-

vector space, whose direct sum is an n-dimensional vector space over Z/pZ. We
conclude that

∑
eifi = n by the well-definedness of vector space dimension.

Theorem 3.3 places a restriction on the way that a rational prime can decompose in a
number field, as in the following example.

Example 3.4. Let K = Q(
√
d), that is, K is a quadratic extension. That [K : Q] = 2

massively restricts the possible ways that a prime can decompose in K. If (p) =
Pe1

1 . . .P
eg
g (assuming each of the ei is non-zero), then we must have g ≤ 2, so that

g = 1 or 2. If g = 2, Theorem 3.1. says that e1f1 + e2f2 = 2, which forces e1 = e2 = f1 =
f2 = 1. If g = 1, then e1f1 = 2, so either e1 = 1 and f1 = 2, or vice-versa. Equivalently,
a rational prime p can only decompose in K in the following ways

pOK = P1P2, where f1 = f2 = 1, and P1 6= P2

pOK = P2, where f1 = 1,

pOK = P, where f1 = 2.

In the first case, pOK splits into a product of distinct prime ideals. In the second
case, pOK ramifies and P is a prime ideal in OK with ramification index 2. In the third
case, pOK is inert. These behaviours are linked to the solubility of the congruence
X2 ≡ d mod p, and so can be studied via the law of quadratic reciprocity, as is shown
in Theorem 10.2.1. in [3, p.242-245].

Example 3.4 shows the behaviour of primes in a Galois extension. In this case, all of
the ramification indices are the same and all of the inertial degrees are the same, and
so the statement of Theorem 3.3 undergoes a slight modification.

Theorem 3.4. Let K be a number field of degree n and suppose K is Galois over Q.
Let p be a rational prime and suppose that pZ has the OK-factorisation

pOK = Pe1
1 . . .Peg

g .

Then ei = ej and fi = fj for all i, j ∈ {1, . . . , g} and so efg = n.

Proof. Let σ ∈ Gal(K/Q). Then σ(OK) = OK . To see this, note that OK consists of all
elements of K that are integral over Z, and Z is fixed by Gal(K/Q). Additionally, if Pi

is prime then σ(Pi) is prime; if xy ∈ σ(Pi) then σ(x)−1σ(y)−1 ∈ Pi, and so x ∈ σ(Pi) or
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y ∈ σ(Pi). If Pi lies over p then σ(Pi) lies over p, since it also occurs in the factorisation
of pOK . Consider the factorisation

pOK = Pe1
1 . . .Peg

g .

Then σ(pOK) = pOK so that

pOK = σ(P1)e1 . . . σ(Pg)
eg

and so the ramification indices of Pi and σ(Pi) coincide. Finally, if a+Pi is an element
of OK/Pi then σ(a) + σ(Pi) is an element of OK/σ(Pi). Since a ∈ OK , and σ(OK) =
OK , the degrees of OK/Pi and OK/σ(Pi) over Z/pZ are both fi. It remains now to
prove that σ acts transitively on the set of primes of OK that lie above p. Suppose
Pi and Pj both divide pOK but that Pi and Pj are not conjugate, so that for all σ ∈
Gal(K/Q) we have σ(Pi) 6= Pj. Then, by the Chinese remainder theorem, we can
find a β ∈ Pj such that β /∈ Pi for any other i. Let b = N(β) =

∏
σ(β). Then

b ∈ Z, and since β ∈ Pj, we also have b ∈ Pj. Hence, b ∈ Pj ∩ Z = pOK . Now,
for all σ ∈ Gal(K/Q), we have β /∈ σ−1(Pi) and so σ(β) /∈ Pi, but we showed that
b =

∏
σ(β) ∈ pOK ⊂ Pi, so this contradicts that Pi is a prime ideal.

Example 3.5. Let K = Q(
√

78). Since 78 ≡ 2 mod 4 we have OK = Z[
√

78]. The
minimal polynomial of

√
78 over Q is X2 − 78, and the factorisation of a prime in OK is

mirrored by the factorisation of X2−78 mod p, since OK/pOK ∼= Z[X]/(p,X2−78) and
Z[X]/(p,X2 − 78) ∼= Fp[X]/(X2 − 78) where · denotes reduction modulo p. Let p = 3.
Then, since 3 | 78, we have X2−78 ≡ X2 mod 3, and so (3) = (3,

√
78)2 in OK . That is,

the prime 3 ramifies in this extension. When p = 5, we have X2 − 78 ≡ X2 + 2 mod 5,
and this is irreducible, so that Fp[X]/(X2 + 2) is a finite field, and so (5) is prime in OK .

3.3 The Ideal Class Group
Before we begin to talk about the ideal class group, we first need to introduce fractional
ideals.

Definition 3.6. Let D be a Dedekind domain with field of fractions K. A fractional
ideal is a non-empty subset F ⊂ K with the following properties:

(i) if α ∈ F and β ∈ F then α + β ∈ F,
(ii) if α ∈ F and r ∈ D then rα ∈ F, and
(iii) there exists a non-zero γ ∈ D such that γF ⊆ D.

These fractional ideals closely resemble what we, to avoid confusion, now refer to as
integral ideals. Indeed, the class of fractional ideals subsumes that of integral ideals,
in that such a γ always exists for integral ideals; just take γ = 1 and F an integral ideal.
We stress the use of the indefinite article when referring to γ; if γ is such as described
then so is any integral multiple of γ. We can think of these γ as common denominators
for fractional ideals. If D is the ring of integers of a number field K (whose field of
fractions is then, of course, the number field), we can find alternative definitions for
fractional ideals, as in Theorem 2.3 of [4, p.2, 3]. For instance, we can always improve
on a common denominator γ ∈ OK \ {0} by replacing it with N(γ) ∈ Z \ {0}, which is
guaranteed to exist and falls within the description “integral multiple of γ”. Additionally,
fractional ideals are finitely generated OK-modules in K, with the OK-action given by
multiplication. This gives us another way to check if a non-empty subset of K is a
fractional ideal. This is particularly useful when we define the inverse of a fractional
ideal.
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Definition 3.7. For each fractional ideal F of a Dedekind domain D we define the set

F̃ = {γ ∈ K : γF ⊆ D}.

Notice here that γ ∈ K, so this is slightly more than just the common denominators for
a fractional ideal F.
It turns out that F̃ is itself a fractional ideal, the proof of which makes use of the equiv-
alent characterisations mentioned earlier. Indeed, F̃ is non-empty because F has non-
zero common denominators. It is easy to show that left multiplication makes F̃ into an
OK-module. To show that it is finitely generated as an OK-module, let x ∈ F \ {0}. For
any α ∈ F̃ we have αF ⊂ OK , so that xα ∈ OK for any α ∈ F̃, and hence xF̃ ⊂ OK .
In particular, since x is invertible, we have F̃ ⊂ 1

x
OK . Now, recall that OK is a finitely

generated free Z-module. Since F̃ ⊂ 1
x
OK it is a submodule of a finitely generated

free Z-module, and so itself is finitely generated as a Z-module, hence also as an
OK-module. Hence, F̃ is a fractional ideal.
As with any ideal, we can take sums and products of ideals to obtain new ideals.

Proposition 3.3. Let K be a number field and let F be a fractional ideal of OK . Then

FF̃ = OK .

Proof. Suppose there is an ideal I such that FI = OK . For any x ∈ I we have
xF ⊆ IF = FI = OK , so certainly we have I ⊆ F̃. Then FI = OK ⊆ FF̃. On the other
hand, if x ∈ F̃ then xF ⊂ OK by definition, and so FF̃ ⊆ OK . Hence, FF̃ = OK .

Proposition 3.3 suggests we have a multiplicative inverse for multiplication of ideals.
Indeed, we can place a group structure on the set of all fractional ideals of a number
field, since the product of any two fractional ideals is again a fractional ideal, we exhib-
ited the existence of an inverse, and the ideal (1) = OK is a suitable candidate for the
identity of the group.

Proposition 3.4. Let K be a number field and let IK denote the group of fractional
ideals of OK . Let PK denote the set of principal ideals of OK . Then PK E IK .

Proof. IK is an Abelian group, so in fact we need only show that PK is a subgroup
of IK and normality follows immediately. Indeed, the ideal (1) is principal, so there is
an identity in PK . If α ∈ OK then the principal ideal (α) has inverse (1/α). Finally, a
product of principal ideals is again principal, so PK ≤ IK .

Since PK is normal in IK we can form a well-defined quotient from them, and this is
the main definition of this section.

Definition 3.8. Let K be a number field and let IK be the group of fractional ideals
of OK with the subgroup PK of principal fractional ideals. We define the ideal class
group as the quotient Cl(K) := IK/PK . The class number of K, denoted hK , is the
order of Cl(K).

Notice that, if PK = IK then hK = 1 and OK is a principal ideal domain.

Proposition 3.5. Let K be a number field with ring of integers OK . Then

hK = 1 ⇐⇒ OK is a principal ideal domain
⇐⇒ OK is a unique factorisation domain.
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Proof. If hK = 1 then every ideal is principal so OK is a principal ideal domain and
every principal ideal domain is a unique factorisation domain.
For the other direction, suppose that D is a unique factorisation domain and let p ⊂ D
be a non-zero prime ideal. Let x ∈ p be non-zero. Since D is a unique factorisation
domain, we have x = pr11 . . . prnn where the ri ∈ N and the pi are irreducible elements
of D. Now, as p is a prime ideal and x ∈ p, we must have one of the pi ∈ p, so that
(pi) ⊆ p. But any ideal generated by an irreducible element in a unique factorisation
domain is prime, so that (pi) is a prime ideal, and since any prime ideal in a Dedekind
domain is a maximal ideal, we must have that (pi) = p. Finally, note that every ideal
in a Dedekind domain is built from products of prime ideals, and so since we have just
shown that every prime ideal is principal, we must have that every ideal is principal,
i.e. D is a principal ideal domain, and hence hK = 1.

It is not immediately clear that hK should even be finite, however in the case of OK for
some number field K, this is true, which we quote from [8].

Theorem 3.5. Let K be a number field of degree n and let OK be its ring of integers.
Then Cl(K) is a finite group.

Proof. We begin by showing that there is a constant C > 0 such that for an ideal
a ⊂ OK there is an α ∈ a such that |N(α)| ≤ CN(a).
Since OK is a free Z-module we have a basis, say {b1, . . . , bn}. We shall use the n
complex embeddings σ1, . . . , σn : K → C. The norm of an element x ∈ K was defined
in Section 2 as

N(x) =
n∏
i=1

σi(x).

Since x = c1b1 + c2b2 + · · ·+ cnbn, with the ci ∈ Q, we have

|N(x)| =
n∏
i=1

|σi(x)|

=
n∏
j=1

∣∣∣∣∣
n∑
i=1

ciσj(bi)

∣∣∣∣∣
≤

n∏
j=1

n∑
i=1

|ci||σj(bi)|

≤ (max|ci|)n
n∏
j=1

(
n∑
i=1

|σj(bi)|

)
︸ ︷︷ ︸

call this C

.

For any ideal a ⊆ OK we have kn ≤ N(a) < (k + 1)n for some k ∈ Z. Consider the set

S =

{
n∑
i=1

aibi : ai ∈ Z, 0 ≤ ai ≤ k.

}
.

Then |S| = (k + 1)n and so

n∑
i=1

aibi ≡
n∑
i=1

a′ibi mod a
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with ai 6= a′i for some i and 0 ≤ ai, a
′
i ≤ k, by the pigeonhole principle. Hence, we have

n∑
i=1

(ai − a′i)bi ≡ 0 mod a.

Letting ci = ai − a′i we have
n∑
i=1

cibi ∈ a.

Let α =
∑n

i=1 cibi. Then α 6= 0 and

|N(α)| ≤ (max|ci|)nC ≤ knC ≤ CN(a).

Now we prove that the ideal class group is finite. First, we show that there are only
finitely many integral ideals a ⊂ OK with N(a) = k for some k ∈ Z+. First, note that
N(a) = k = |OK/a|, so by Lagrange’s theorem from group theory, we have k ∈ a, and
thus (k) ⊂ a, that is, a | (k). Since OK is a Dedekind domain we have prime ideals pi
such that

(k) = pr11 . . . prnn

and since a | (k) we have
a = ps11 . . . psnn

with si ∈ {0, . . . , ri} for i = 1, . . . , n. Hence, there are at most (r1 + 1)(r2 + 1) . . . (rn + 1)
possibilities for a. That is, there are at most (r1 + 1) . . . (rn + 1) integral ideals a that
have norm k. We combine these two results to prove that Cl(K) is finite.
Denote by [b] the class of the ideal b in Cl(K) and let a be an ideal in [b]−1 so that
a−1 ∈ [b]. Take an element α ∈ a so that (α) ⊆ a and hence a | (α). Thus, b = (α)a−1

is an integral ideal in the class [b], and N(b) = N((α)a−1) = |N(α)|N(a)−1 ≤ C, where
C is the bound given in the first part of the proof. It follows, then, that each ideal class
[b] is represented by an integral ideal of OK with norm less than C, and so there are
only finitely many ideal classes, and so the ideal class group is finite.

Thus, we have shown that there can only be finitely many representatives for a given
ideal class. To conclude, note that every ideal in a Dedekind domain is a product of
prime ideals, and so it suffices for the generation of the ideal class group to only look
at prime ideals of norm at most C, as given in Theorem 3.5.

The main use for the bound C in Theorem 3.5 was showing that the ideal class group
is finite. In practice, we use a much tighter bound called the Minkowski bound, whose
derivation is a little more involved and is presented in [3, p.300-310].

Definition 3.9. Let K be a number field of degree n = r1 +2r2, where r1 is the number
of real embeddings of K and r2 the number of pairs of complex embeddings. Let dK
be the discriminant of K. We define the Minkowski bound to be the real number

MK =
n!

nn

(
4

π

)r2√
|dK |.

The bound MK functions the same way as the bound C in Theorem 3.5, but drastically
reduces the number of ideals we need to check to determine the structure of Cl(K).
As an example, if K = Q(

√
−5) then C = (1 +

√
5)2 ≈ 10.47, while MK ≈ 2.85. In the
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first case, we would have to check prime ideals lying above 2, 3, 5, and 7, while in the
second case we need only check prime ideals lying above 2. We present some ideal
class group computations using the Minkowski bound.

Example 3.6. Let K = Q(
√

78). As 78 ≡ 2 mod 4, the full ring of integers of K is
OK = Z[

√
78]. We now compute the ideal class group of K using the Minkowski

bound.
First we need to calculate some invariants of K. Since K is quadratic, we have [K :
Q] = 2, and the discriminant of K is dK = 4 · 78. Hence, the Minkowski bound for K is
MK ≈ 8.83... and so Cl(K) is at most generated by primes of K lying above 2, 3, 5, and
7. In order to determine how these primes look in Cl(K), we need to find the prime
ideal factorisation of the ideals (2), (3), (5), and (7) in OK . These are easily found in
analogy with the factorisation of the minimal polynomial of

√
78 modulo each of these

primes. The following table summarises these factorisations:

p Factorisation modp Result Norms
2 X2 (2) = p2

2 N(p2) = 2
3 X2 (3) = p2

3 N(p3) = 3
5 X2 + 2 (5) = p5 N(p5) = 25
7 (X − 1)(X + 1) (7) = p7p7 N(p7) = N(p7) = 7

.

In order to determine the structure of Cl(K) we need to establish relations between
each of the primes in the table. Firstly, note that since (5) remains prime in OK , the
ideal class of p5 is trivial. Next, we have the relations p2

2 ∼ 1, p2
3 ∼ 1, and p7p7 ∼ 1. The

element α = 8 +
√

78 has norm N(α) = −14 = −(2 · 7) we have that N((8 +
√

78)) =
N(p2)N(p7) and so (8 +

√
78) = p2p7. Since this is principal, we obtain the relation

p2 ∼ p−1
7 , and so we may eliminate [p7] and [p7] from the generating set of Cl(K). Now,

notice that there is an element of norm 3 in OK , namely, N(9 +
√

78) = 3, so that p3

is principal. Finally, notice that the norm equation a2 − 78b2 = 2 has no solutions in Z,
since a2 ≡ 2 mod 78 has no solutions, and so p2 is non-principal. Hence, we conclude
that Cl(K) = 〈[p2]〉 ∼= Z/(2).

4 Fermat’s Last Theorem for Regular Primes
In this Section we present a partial proof of Fermat’s Last Theorem. The proof uses
the ideas of Kummer, albeit in more modern language. Indeed, when Kummer first
came up with his proof the language of ideals did not exist, and he instead used the
language of ideal numbers. A more detailed account of Kummer’s original ideas can
be found in [2]. We first introduce the crucial property of regularity, for which regular
primes are named.

Definition 4.1. Let p be a rational prime and let K = Q(ζp), where ζp 6= 1 is a pth root
of unity. Then p is said to be a regular prime if p - hK .

Here, we follow a proof given in [9]. We first require a few lemmas.

Lemma 4.1. In Z[ζp], the numbers 1− ζp, 1− ζ2
p , . . . , 1− ζp−1

p differ only by a unit, and
1 + ζp is a unit. Also, p = u(1 − ζp)p−1 for some unit u and (1 − ζp) is the only prime
ideal of Z[ζp] lying above p.
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Proof. For any 1 ≤ j ≤ p− 1 we have

1− ζjp
1− ζp

= 1 + ζp + · · ·+ ζj−1
p ∈ Z[ζp].

In addition, since p - j, we may write jj′ ≡ 1 mod p, and hence

1− ζp
1− ζjp

=
1− ζjj′p
1− ζjp

∈ Z[ζjp ]

and since Z[ζjp ] = Z[ζp], we have that the inverse of 1−ζjp
1−ζp is also in Z[ζp], so the two are

units. Thus, writing 1−ζjp
1−ζp (1 − ζp) we see that 1 − ζjp is a unit multiple of 1 − ζp for any

1 ≤ j ≤ p− 1. Letting j = 2 gives us that 1 + ζp is a unit.
The minimal polynomial of ζp over Q is Φp(X) = 1 + X + · · · + Xp−1, so in Q(ζp) (the
splitting field of Φp(X)) we have

Φp(X) = 1 +X + · · ·+Xp−1 =

p−1∏
i=1

(X − ζ ip).

Setting X = 1 gives

Φp(1) = p =

p−1∏
i=1

(1− ζ ip)

and so the previous argument shows that p = u(1 − ζp)p−1. Thus, as ideals, we have
(p) = (1 − ζp)p−1. The properties of prime splitting that we discussed in the previous
Section show that, since [Q(ζp) : Q] = p− 1, this must be a prime decomposition, and
so (1− ζp) is a prime ideal, and is the only prime ideal dividing p.

Lemma 4.2. Let α ∈ C be an algebraic number such that all of the conjugates of α
have absolute value 1. Then α is a root of unity.

Proof. Let T (X) ∈ Z[X] be an irreducible polynomial such that

T (X) =
n∏
i=1

(X − αi)

in some splitting field of T (X). Consider, for k ≥ 1, the polynomials

Tk(X) =
n∏
i=1

(X − αki ).

Then the coefficients of Tk(X) are symmetric polynomials in the αi with integer coeffi-
cients. Since |αki | = |αi|k = 1, the triangle inequality gives us a bound on the coefficient

of Xn−m in Tk(X), namely
(
n
m

)
. Hence, since the coefficients are integers, there are

only finitely many Tk(X) and so there are only finitely many distinct values for αki , so
there exists i and k1 6= k2 such that

αk1i = αk2i

and so αk1−k2i = 1. Thus, αi is a root of unity, and it follows that all the conjugates of αi
are roots of unity.
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Let σ ∈ Gal(Q(ζp)/Q) and denote by · complex conjugation (which is also an element
of Gal(Q(ζp)/Q)). Then, since Gal(Q(ζp)/Q) is Abelian, we have σ(u) = σ(u). Given
any u ∈ Z[ζp]

×, we have that u/u has absolute value 1, and so if σ ∈ Gal(Q(ζp)/Q),
we have that σ(u)/σ(u) = σ(u)/σ(u) has absolute value 1. Since these are exactly the
Q-conjugates of u/u, Lemma 4.2 tells us that u/u is a root of unity, and so u/u = ±ζkp
for some k ∈ Z. We now show that the sign is actually +. Suppose u ∈ Z[ζp]

× and
write u = a0 + a1ζp + · · ·+ ap−2ζ

p−2
p . Since ζp ≡ 1 mod (1− ζp) we must have

u ≡ a0 + a1 + · · ·+ ap−2 mod (1− ζp).

In the same way, since we showed above that 1−ζp and 1−ζp−1
p = 1−ζp are associates,

we must have
u ≡ a0 + a1 + · · ·+ ap−2 mod (1− ζp).

Thus, if u ≡ −ζkpu then we have

u ≡ u ≡ −ζkpu ≡ −u mod (1− ζp).

But then 2u ∈ (1 − ζp), a prime ideal, and since neither p 6= 2, 2 /∈ (1 − ζp) and u is a
unit so certainly u /∈ (1− ζp), this is a contradiction.

Lemma 4.3 (Kummer’s Lemma). Let u be a unit in Z[ζp]. If u ≡ k mod p for some
rational integer k and p a regular prime then in fact u = vp for some other v ∈ Z[ζp]

×.

Proof. The proof of this requires a lot of machinery from p-adic analysis, and thus
won’t be discussed here. A proof can be found in [10]

We are now ready to prove Fermat’s Last Theorem for regular primes. The proof will
be divided into two cases. In the first case, we shall assume that p - xyz, while in the
second case we shall relax this assumption.

4.1 The First Case
Theorem 4.1. Let p be a regular prime. Then the equation xp+yp = zp has no solutions
in integers with p - xyz.

Proof. First, note that we may assume for any solution that x 6≡ y mod p. If not, that is,
if x ≡ y mod p, then zp ≡ z ≡ xp + yp ≡ 2x mod p, so z ≡ 2x mod p. Now, take a new
solution x′ = x, y′ = −z and z′ = −y. Then y′ = −z ≡ −2x mod p, so if x′ ≡ y′ then
x ≡ −2x mod p so that p | 3x. But p ≥ 5 and p - xyz, so this cannot happen. Hence,
given any solution (x, y, z) we may transform to a solution for which x 6≡ y mod p.
We now look to the factorisation of xp + yp in Z[ζp]. We have

zp = xp + yp =

p−1∏
i=1

(x+ ζ ipy).

We shall show that any pair of ideals (x + ζ ipy) and (x + ζjpy) are coprime. Suppose
that p ⊂ Z[ζp] is a prime ideal dividing both (x+ ζ ipy) and (x+ ζjpy). Then p also divides
the ideals

((x+ ζjpy)− (x+ ζ ipy)) = ((ζjp − ζ ip)y)
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and
((x+ ζjpy)− ζj−ip (x+ ζ ipy)) = ((1− ζj−ip )x).

Now, notice that ζjp − ζ ip = ζjp(1 − ζ i−jp ) and 1 − ζj−ip are both a unit away from 1 − ζp.
Hence, we have that p divides the ideals (1 − ζp)(x) and (1 − ζp)(y). Since x and y
were assumed coprime, we must have that p | (1− ζp), but (1− ζp) is prime, and so we
conclude that p = (1− ζp). Suppose then that (1− ζp) | (x+ ζ ipy) and (1− ζp) | (x+ ζjpy)
as ideals. Then, since these are principal ideals, we must have

x+ ζ ipy ≡ 0 mod 1− ζp.

Notice, in addition, that 1− ζp | 1− ζ ip (as elements), and so ζ ip ≡ 1 mod 1− ζp, allowing
us to conclude that

x+ y ≡ 0 mod 1− ζp
and hence that x + y ∈ (1 − ζp). Now, since (1 − ζp) is a prime ideal lying above the
prime ideal pZ, we have (1−ζp)Z[ζp]∩Z = pZ, and since x+y ∈ Z we have x+y ∈ pZ,
so that p | x+ y. But x+ y ≡ xp + yp ≡ zp mod p, and so p | zp, and as a result we have
p | z, contradicting that p - xyz. Hence, (x + ζ ipy) and (x + ζjpy) are coprime ideals for
i 6= j.
We now use the fact that Z[ζp] is the ring of integers of the number field Q(ζp) to note
that, since Z[ζp] is a Dedekind domain, every ideal has a unique factorisation into a
product of prime ideals. Consider the factorisation

(z) = pe11 . . . pegg

where the pi are pairwise distinct prime ideals in Z[ζp] and the ei ∈ N. Then

(z)p = ppe11 . . . ppegg

and so
(x+ y)(x+ ζpy) . . . (x+ ζp−1

p y) = ppe11 . . . ppegg .

Now, since the ideals on the left-hand side are pairwise coprime, each prime factor on
the right-hand side can occur in the prime factorisation of exactly one of the ideals on
the left hand side, so that, for example

(x+ ζ ipy) = ppe11 . . . ppess = (pe11 . . . pess )p = api

with s < g. Hence (x+ζ ipy) is the pth power of some ideal ai ⊂ Z[ζp] with (z) = a1 . . . ar.
This is where the regularity assumption on p is used; since p - hK , there are no ideal
classes of order p in Cl(Q(ζp)) and so the fact that api is principal implies that ai is itself
principal. Let ai = (αi) with αi ∈ Z[ζp], so that

(x+ ζ ipy) = (αi)
p.

Then we may pass to elements and write x+ ζ ipy = uαpi for some u ∈ Z[ζp]
×.

We now show that αpi is congruent to a rational integer modulo p. Since {1, ζp, . . . , ζp−2
p }

is an integral basis for OQ(ζp) we have

αpi = (a0 + a1ζp + · · ·+ ap−2ζ
p−2
p )p
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for some ai ∈ Z. Now, since p divides all of the binomial coefficients
(
p
k

)
with k 6= 0, p,

we have
αpi ≡ ap0 + ap1ζ

p
p + · · ·+ app−2ζ

p(p−2)
p mod p

and since ζjpp = 1, we have

αpi ≡ ap0 + ap1 + · · ·+ app−2 mod p.

In particular, αpi ≡ αi
p mod p since rational integers are fixed by complex conjugation.

We know that u/u = ζjp for some 0 ≤ j ≤ p− 1. Thus, we have

x+ ζpy = uαp1 = ζjpuα
p
i ≡ ζjpuαi

p mod p ≡ ζjp(x+ ζp−1
p y) mod p.

In summary, since ζp−1
p = ζ−1

p , we have

x+ ζpy − ζj−1
p y − ζjpx ≡ 0 mod p

when u/u = ζjp . We wish to show that this congruence cannot hold. At the start
of Section 3 we showed that OQ(ζp)/pOQ(ζp)

∼= (Z/pZ)p−1 by showing that, given a
basis {b1, . . . , bp−1}, we could construct a set {b1 + pOQ(ζp), . . . , bp−1 + pOQ(ζp)} of Z/pZ-
linearly independent elements which spanned OQ(ζp)/pOQ(ζp). Since {1, ζp, . . . , ζp−2

p }
are a basis for OQ(ζp), this shows that {1 + pOQ(ζp), ζp + pOQ(ζp), . . . , ζ

p−2
p + pOQ(ζp)} is

a Z/pZ-linearly independent set, and so neither of the congruences from above can
hold if 0, 1, j − 1 and j are all distinct. If j = 0, 1, 2, or p − 1 then this can break down,
since, for example, if j = 1 then 0 = j−1. We shall account for all of these possibilities
and show that, in every case, we reach a contradiction.

j = 0: If j = 0 then we have

x+ ζpy − ζ−1
p y − x ≡ y(ζp − ζ−1

p ) mod p.

Since p - y we may divide by y to obtain

ζp ≡ ζ−1
p mod p

and hence ζ2
p − 1 ≡ 0 mod p, contradicting the Z/pZ-linear independence of 1 and ζ2

p .

j = 1: If j = 1 then we have

x(1− ζp) ≡ y(1− ζp) mod p.

Writing p = u(1− ζp)p−1 for some unit u, we thus have

x ≡ y mod (1− ζp)p−2

so that (1 − ζp)p−2 | x − y, and so certainly 1 − ζp | x − y and hence x − y ∈ (1 − ζp).
But x− y ∈ Z and (1− ζp) ∩ Z = (p), so x ≡ y mod p, a possibility that we ruled out at
the start of the proof.

j = 2: If j = 2 then we have

x+ ζpy − ζpy − ζ2
px ≡ x− ζ2

px ≡ 0 mod p
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and this, again, contradicts the linear independence of 1 and ζ2
p .

j = p− 1: If j = p− 1 then

x+ ζpy − ζp−2
p y − ζp−1

p x ≡ 0 mod p.

Now notice that ζp−1
p = −(1 + ζp + · · ·+ ζp−2

p ) so

x+ ζpy − ζp−2
p y + (1 + ζp + · · ·+ ζp−2

p )x ≡ 0 mod p

which contradicts the Z/pZ-linear independence of the ζ ip.

Thus, we have dealt with all possibilities and have shown that no solution to xp+yp = zp

can exist in integers prime to p.

4.2 The Second Case
Theorem 4.2. Let p be a regular prime. Then the equation

xp + yp = zp

has no solutions x, y, z ∈ Z with p | z.

Proof. Since p is an odd prime (Fermat’s equation is true for p = 2!), for any solution
(x, y, z) ∈ Z3 we also have

xp + yp + (−z)p = 0

and so under z 7→ −z, we make use of this symmetry and instead prove a statement
similar to

xp + yp + zp = 0.

First, note that we may assume that p | z but p - x, y, since if p | z and p | x, say, then
since xp + zp = −yp, we have p | y, and so we may expel this factor of p. We prove,
instead, the following stronger statement:

Let p be a regular prime. Then the equation

αp + βp + u(1− ζp)npγp = 0

has no solutions with α, β, γ ∈ Z[ζp] all prime to 1− ζp and u ∈ Z[ζp]
×.

The strategy will be similar to that of the first case, but in this case we note that the
ideals (α + β), (α + ζpβ), . . . , (α + ζp−1

p β) will no longer be coprime, and so a closer
examination of their prime decomposition will be necessary. In the same vain as in the
first case, we make the following observation: given a solution (α, β, γ), we have the
ideal equation

p−1∏
i=0

(α + ζ ipβ) = (1− ζp)pn(γ)p.

Now, since ζp ≡ 1 mod 1−ζp, we have that α+ζ ipβ ≡ α+β mod 1−ζp, so that all of the
α+ ζ ipβ are congruent modulo 1− ζp. Hence, if one of the α+ ζ ipβ is divisible by 1− ζp
then all of them are. Indeed, by the ideal equation above, since α, β, γ are pairwise
coprime, we must have that all of the α + ζ ipβ are divisible by 1− ζp.
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Suppose now that there exist i, i′ with i′ > i such that α+ ζ ipβ ≡ α+ ζ i
′
p β mod (1− ζp)2.

Then ζ ipβ(1− ζ i′−ip ) ≡ 0 mod (1− ζp)2. Now, ζ ip is a unit and 1− ζ i′−ip is an associate of
1 − ζp, so this must imply that (1 − ζp)2 | β, and hence that (1 − ζp) | β, contradicting
the assumption that β is prime to 1 − ζp. Given any number δ(1 − ζp), considered
modulo (1− ζp)2, we care about δ only up to multiples of 1− ζp, since if 1− ζp | δ then
δ(1 − ζp) ≡ 0 mod (1 − ζp)

2. Recalling that (p) = (1 − ζp)
p−1 as ideals, we have that

N(p) = pp−1 = N(1− ζp)p−1, and so N(1− ζp) = p, so that the inertial degree of (1− ζp)
over (p) is 1, and we conclude that Z[ζp]/(1 − ζp) ∼= Z/(p), and hence that there are
only p multiples of 1− ζp modulo (1− ζp)2. From above, we saw that all of the α + ζ ipβ
are distinct modulo (1− ζp)2, and so we must have that one of these is congruent to 0
modulo (1− ζp)2. Hence, we have that all of the terms on the left-hand side of the ideal
equation above are divisible by 1− ζp, and exactly one of them is divisible by (1− ζp)2,
and so n 6= 1.
We wish then to prove the statement for some n > 1. The strategy is to take n to
be minimal for the solution (α, β, γ), and to then construct a new solution (α′, β′, γ′) in
such a way that

(α′)p + (β′)p + v(1− ζp)p(n−1)(γ′)p = 0,

with α′, β′, γ′ prime to 1−ζp and v ∈ Z[ζp]
×. This new solution contradicts the minimality

that we built into n and thus proves that no solution can exist.
If α + ζ ipβ is the term on the left hand side of the ideal equation above then we may
replace ζ ipβ with β (since ζp ≡ 1 mod 1− ζp) and so we may safely assume that α+β ≡
0 mod (1− ζp)2 and that α+ ζ ipβ 6≡ 0 mod (1− ζp)2 for any 1 ≤ j ≤ p− 1. Let d = (α, β),
that is, the ideal generated by α and β. Then certainly d | (α + ζ ipβ) for any i, since
d = {r1α + r2β : r1, r2 ∈ Z[ζp]}, and so taking r1 = 1 and r2 = ζ ip, we have that
α + ζ ipβ ∈ d and hence (α + ζ ipβ) ⊆ d. Finally, since (1− ζp) | (α + ζ ipβ) (as ideals) but
(1− ζp)2 | (α+ β) only, we have that d(1− ζp) is the smallest ideal containing all of the
ideals (α + ζ ipβ), and hence this is the greatest common divisor of all of the (α + ζ ipβ).
Furthermore, we make the observation that

(1− ζp)np |
p−1∏
i=0

(α + ζ ipβ)

and since (1− ζp) divides each of the (α + ζ ipβ), with i > 0, only once, we have that

(1− ζp)p−1 |
p−1∏
i=1

(α + ζ ipβ).

We conclude, thus, that (1− ζp)np−(p−1) | (α + β). Hence, we write

(α + β) = d(1− ζp)np−p+1I0

(α + ζpβ) = d(1− ζp)I1

...
(α + ζp−1

p β) = d(1− ζp)Ip−1

where the Ii are pairwise coprime (since d(1 − ζp) is the greatest common divisor of
any two (α + ζ ipβ)). Thus, the ideal equation gives us that each of the Ii is the pth
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power of some ideal, say Ii = api . Suppose then that we take the ratio of (α+ ζ ipβ) and
(α + β). Then we have the (fractional) ideal equation

(α + ζ ipβ)(α + β)−1 = (1− ζp)p(1−n)api a
−p
0

and hence (
(α + ζ ipβ)(1− ζp)p(n−1)

α + β

)
= api a

−p
0

showing that api a
−p
0 is a principal fractional ideal. Thus, by the regularity of p, we must

have that aia−1
0 is itself a principal fractional ideal. Choose xi ∈ Q(ζp) such that (xi) =

aia
−1
0 . By the way the ai were defined, we have that (1− ζp) - (xi). Hence, we have the

ideal equation (
(α + ζ ipβ)(1− ζp)p(n−1)

α + β

)
= (xi).

This is an equality of principal ideals, so there exists some unit ui ∈ Z[ζp]
× such that

we may pass to the equation of elements

α + ζ ipβ

α + β
=

uixi
(1− ζp)p(n−1)

.

Consider now the relation

ζp(α + ζp−1
p β) + (α + ζpβ)− (1 + ζp)(α + β) = 0.

Dividing by α + β and using the elemental equation from above we have

ζpup−1x
p
p−1

(1− ζp)p(n−1)
+

u1x
p
1

(1− ζp)p(n−1)
− (1 + ζp) = 0.

Clearing denominators, we obtain

ζpup−1x
p
p−1 + u1x

p
1 − (1 + ζp)(1− ζp)p(n−1) = 0.

Now, since the xi ∈ Q(ζp) and Q(ζp) is the field of fractions of Z[ζp], we can write xi
as the ratio of a pair of elements from Z[ζp], with the additional property that 1− ζp not
divide either of these elements (since xi was itself prime to 1 − ζp). Thus, we write
xp−1 = ap−1/bp−1 and x1 = a1/b1 (where, of course, bp−1, b1 6= 0). Dividing by ζpup−1 and
clearing denominators we have

(ap−1b1)p +
u1

ζpup−1

(a1bp−1)p − 1 + ζp
ζpup−1

(1− ζp)p(n−1)(b1bp−1)p = 0.

Since a1, ap−1, b1, bp−1 ∈ Z[ζp], the product of any pair is also an element of Z[ζp]. Rather
suggestively, we let α′ := ap−1b1, β′ := a1bp−1, and γ′ := b1bp−1, so that the equation
reads

(α′)p +
u1

ζpup−1

(β′)p − 1 + ζp
ζpup−1

(1− ζp)p(n−1)(γ′)p = 0

where α′, β′, and γ′ have been chosen such that none of them is divisible by 1− ζp.
The coefficients in front of (β′p)

p and (1 − ζp)p(n−1)(γ′)p are units, but they aren’t quite
as we’d like them; in particular, the coefficient of (β′p)

p is not 1, so this is not quite
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the equation that we’re looking for. We recall from Case 1 that the pth power of a
cyclotomic integer is congruent modulo p to a rational integer, and appeal to Kummer’s
Lemma to rewrite this.
Considered modulo p, there exist non-zero rational integers m1 and m2 such that

(α′)p ≡ m1 mod p and (β′)p ≡ m2 mod p.

In addition, since we proved that n > 1, and using the fact that p = U(1 − ζp)p−1, the
last term in our equation is 0 modulo p, and so we have

(α′)p +
u1

ζpup−1

(β′)p − 1 + ζp
ζpup−1

(1− ζp)p(n−1)(γ′)p = 0 ≡ m1 +
u1

ζpup−1

mod p.

Since m1,m2 are non-zero in Z/(p), and m2 is invertible modulo p, we have

u1

ζpup−1

≡ −m1m
′
2 mod p.

But the left-hand side of this congruence is a unit, and −m1m
′
2 is a rational integer, and

so Kummer’s Lemma says that u1
ζp−1

is in fact equal to the pth power of some unit, say
u ∈ Z[ζp]

×, so that u1
ζpup−1

= up. Thus, we may replace β′ with uβ′ to obtain

α′p + β′p + V (1− ζp)p(n−1)γ′p = 0

where V is the unit V = − (1+ζp)

ζpup−1
. Thus, we have constructed a solution such that

α′, β′, γ′ are all prime to 1 − ζp and we have replaced n by n − 1. By descent, we
conclude that no solution (α, β, γ) could have existed to begin with. Finally, note that if
p | z then we can write z = pkz0 where p - z0, and so Fermat’s equation becomes

xp + yp + U(1− ζp)kp(p−1)zp0 = 0,

for some U ∈ Z[ζp]
× and x, y, z0 prime to (1 − ζp), so the proof of the theorem for

α, β, γ ∈ Z[ζp] applies in this case.

Combining the two theorems, we have shown that there exist no integers x, y, z such
that

xp + yp = zp

where p is a regular prime, hence concluding this Section.

5 The Hilbert Class Field
In this Section we shall deepen our study of factorisation in number fields, as intro-
duced in Section 3. In particular, we shall link this to the Galois theory studied in
Section 1 to study some properties of the properties of an Abelian extension H over
a number field K such that H is unramified at all primes of K by linking the ideal
structure of OK to the Galois group Gal(H/K). First, we introduce some Galois theory
specific to number fields. The exposition in this Section follows [7] and [11].
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5.1 Decomposition and Inertia Groups
Definition 5.1. Let K be a number field and L an extension of K. Let p ⊂ OK be a
non-zero prime ideal and P ⊂ OL a non-zero prime ideal such that P ∩ OK = p. The
decomposition group of P is the set ZP = {σ ∈ Gal(L/K) : σ(P) = P}.

It is easy to see that ZP ≤ Gal(L/K); if σ, τ ∈ ZP then σ(P) = P and τ(P) = P, so
σ(P) = τ(P), and hence τ−1 ◦ σ(P) = P, i.e. τ−1 ◦ σ ∈ ZP.
We saw in Section 3 that Gal(L/K) acts transitively on the primes of OL lying over a
given prime p ⊂ OK . The group ZP is the stabiliser of the prime P under this action.
Thus, if there are g primes of OL lying over p then, by the Orbit-Stabiliser theorem, we
have

[Gal(L/K) : ZP] = g

and so |Gal(L/K)| = g|ZP|. Finally, we have |Gal(L/K)| = [L : K], and we saw in
Section 3 that [L : K] = efg where e is the ramification index, f the inertial degree,
and g the decomposition number, of the primes P of OL lying above the prime p of OK .
Thus, we conclude that

|ZP| = ef.

Proposition 5.1. Let L/K be a Galois extension of number fields, let P,P′ ⊂ OL be
two primes of OL lying above the prime p ⊂ OK . Then the decomposition groups ZP

and ZP′ are conjugate.

Proof. Let σ, τ ∈ Gal(L/K). Then τ−1(σ(τ(P))) = P if and only if σ(τ(P)) = τ(P).
Thus τ−1στ ∈ ZP if and only if σ ∈ Zτ(P). Hence, τ−1ZPτ = Zτ(P). That Gal(L/K) acts
transitively on the primes of OL lying over p gives us the result.

Proposition 5.2. Let L/K be an extension of number fields and let P and p be non-
zero primes of OL and OK respectively and such that P lies over p. Denote by FP

the finite field OL/P and by Fp the finite field OK/p, and recall that the degree of this
extension is the natural number f(P/p); the inertial degree of P over p. We have

(i) FP/Fp is a Galois extension,

(ii) σ(OL) = OL for all σ ∈ Gal(L/K), and

(iii) for all σ ∈ ZP there is a natural action of σ on FP/Fp that fixes Fp.

Proof. For (i), we note that FP/Fp is a finite field of order pf(P/p), and so it is the splitting
field of the polynomial Xpf(P/p) −X ∈ Fp[X], and is hence Galois. Since Fp ⊂ Fp ⊂ FP,
Galois theory says that FP/Fp is a Galois extension of degree f(P/p) over Fp.
For (ii), we recall that any element of OL satisfies a monic polynomial over Z, so that if
` ∈ OL we have

`n + an−1`
n−1 + · · ·+ a1`+ a0 = 0

with the ai ∈ Z. Since Gal(L/K) fixes all of K and Z ⊂ K, we have

σ(`)n + an−1σ(`)n−1 + · · ·+ a1σ(`) + a0 = 0

and conclude that σ(`) ∈ OL. Thus σ(OL) = OL.
For (iii), the elements of FP are cosets `+ P with ` ∈ OL so if σ ∈ ZP then σ(`+ P) =
σ(`) + P, and by (ii) σ(`) ∈ OL. Since σ(P) = P and p ⊂ OK , we also have σ(p) = p.
Thus, as the elements of Fp are cosets k + p with k ∈ OK and σ ∈ Gal(L/K), we also
have that σ(k + p) = k + p and so σ fixes Fp.
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Part (iii) of Proposition 5.2 tells us that σ ∈ ZP induces an Fp-automorphism σ̃, so we
may conjecture the existence of a map ZP → Gal(FP/Fp) with σ 7→ σ̃. Indeed, such
a map exists, which we will now show with the following theorem from [7, p.15], with
suitable specialisation to the case of extensions of number fields.

Theorem 5.1. Let L/K be an extension of number fields. Let P ⊂ OL be a non-zero
prime ideal lying above a non-zero prime ideal p ⊂ OK . Let σ ∈ ZP. Then there is a
surjective homomorphism of groups

ϕ : ZP → Gal(FP/Fp)

σ 7→ σ̃.

The kernel of ϕ is TP = {σ ∈ ZP : σ(α) ≡ α mod P, ∀α ∈ OL}. In particular, we have
that ZP/TP ∼= Gal(FP/Fp).

Proof. We shall first reduce to the case where there is exactly one prime ideal of OL
lying above p. To do this, we first show that the fixed field of ZP is the smallest field in
which P is the unique prime ideal lying above p. Following this, we look at the integral
closure of OK in this field, which we denote OZP

K , and show that OK/p ∼= O
ZP

K /q, where
q = P ∩ OZP

K . In doing so, we may take K = KZP and q = p.
Let E be a subfield of L such that K ⊂ KZP ⊂ E ⊂ L and such that P is the unique
prime of L lying above q = P ∩ OE. Then, by Theorem 3.4, since the primes of L
lying above q are conjugate under the action of Gal(L/E), we must have that P is fixed
under this action, and so Gal(L/E) ≤ ZP. By the Galois correspondence, this means
that E ⊃ KZP, and since E was arbitrary, this proves that KZP is the smallest subfield
of L containing K with the desired property.
To show that OK/p ∼= O

ZP

K /q, we note that the map a+ p 7→ a+ q is an injection (since
OK ⊂ O

ZP

K and p ⊂ q) so it remains only to prove that this map is also a surjection.
Suppose that σ /∈ ZP so that σ(P) 6= P and σ−1(P) 6= P, and let qσ = σ−1(P) ∩ OZP

K .
Then q 6= qσ, so the Chinese remainder theorem allows us to find x, y ∈ OZP

K such that

y ≡ x mod q

y ≡ 1 mod qσ

for every σ /∈ ZP. Thus, we also have the congruences

y ≡ x mod P

y ≡ 1 mod σ−1(P).

Hence, we also have σ(y) ≡ 1 mod P for every σ /∈ ZP. Considering the norm function
N
K

ZP/K
: KZP → K, since Aut(KZP/K) ∩ ZP = {id} (note this extension is not Galois

in general), we have that the norm of an element of KZP/K is a product of σ(y) with
σ /∈ ZP, and so

N
K

ZP/K
(y) ≡ x mod P.

However, since y ∈ OZP

K , the norm of y is an element of OK ⊂ O
ZP

K so x,N
K

ZP/K
(y)

are both elements of OZP

K . Thus, N
K

ZP/K
(y)−x ∈ P∩OZP

K = q, so the last congruence
holds modulo q. To clarify, we have given a way of constructing an element of OK to
which x is congruent modulo q, which is what we wanted.
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At this point, we have the desired case reduction. Indeed, since OK/p ∼= O
ZP

K /q we
may replace Fp in the statement of the theorem with Fq := OZP

K /q. Following this, we
replace K with KZP so that Gal(L/K) = Gal(L/KZP) = ZP.
Finally, take an element α̃ := α + P ∈ FP such that FP = Fq(α̃) and lift this to an
element α ∈ OL. Letting f(X) ∈ KZP [X] be the minimal polynomial of α over KZP,
we note that any automorphism of FP is determined by its effect on α̃ and sends α̃
to a root of f̃(X) := f(X) mod P. Suppose α = α1. Then, given any other root
αi of f(X), we have an element σ ∈ ZP such that σ(α) = αi and so σ̃(α̃) = α̃i.
Since the action of Gal(L/KZP) on the roots of f(X) is transitive, the automorphisms
σ̃ ∈ Gal(FP/Fq) induced by elements of Gal(L/KZP) act transitively on the roots of
f(X) and so we obtain every automorphism of FP/Fq in this way. We conclude then
that ϕ : ZP → Gal(FP/Fq) is a surjection, and since Fq = Fp, the result is proven. The
kernel of this action is the set of σ ∈ ZP such that σ(α) ≡ α mod P for all α ∈ OL. In
other words, this is the set of σ ∈ ZP such that σ is the identity map on Gal(FP/Fp),
which we denote TP. By the first isomorphism theorem, ZP/TP ∼= Gal(FP/Fp).

Definition 5.2. Let ϕ : ZP → Gal(FP/Fp) be the surjective group homomorphism
discussed in Theorem 5.1. The kernel of ϕ is called the inertia group of the prime
ideal P, denoted TP. The fixed field of TP, being that it is a subgroup of a Galois group,
is denoted KTP.

We saw earlier that |ZP| = ef where e = e(P/p) is the ramification index of P over p
and f = f(P/p) is the inertial degree of P over p. Additionally, we know from Galois
theory that Gal(FP/Fp) = [FP : Fp] = f , and so Theorem 5.1 tells us that

|ZP/TP| = f.

We conclude that |TP| = e, and so, in particular, if p is unramified in OL then e = 1 and
so ZP

∼= Gal(FP/Fp).

The point of this discussion of decomposition and inertia groups is to illustrate the
splitting properties of primes in Galois extensions of number fields. In particular, in
each intermediate extension the prime ideals under consideration behave in a very
predictable way. We have the following situation for a Galois extension L of a number
field K:

L P̄e
1 P̄e

2 P̄e
g f = g = 1

KTP P̂1 P̂2 P̂g e = g = 1

KZP P1 P2 Pg e = f = 1

K p

e

f

ef

efg

g
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where Pi is understood to be the prime of its decomposition field lying above p, P̂i

a prime of its inertia field lying above p, and P̄i a prime of L. Intuitively, we see that
KZP/K is responsible for all of the splitting of p, KTP/KZP is responsible for all of the
inertial degree of the primes lying above p, and L/KTP for all of the ramification of p in
L.

5.2 The Hilbert Class Field
We shall need to introduce some terminology before we begin taking steps to construct
the Hilbert class field. Firstly, we distinguish between finite and infinite primes; an
infinite prime is an embedding of K into C, while a finite prime is a prime ideal7. As well
as discussing the ramification of finite primes as discussed previously in the project,
we shall also discuss the ramification of infinite primes. An infinite prime σ of K will
be called ramified in an extension L if σ : K ↪→ R is a real embedding, but whose
extension to L is a complex embedding.

Definition 5.3. Let K be a number field other than Q. There is an extension H/K such
that H is Abelian, unramified, and such that every other unramified Abelian extension
of K is contained in H. We call H the Hilbert class field of K and it is the unique
extension of K with these properties.

We shall show that the Hilbert class field also has the interesting property that its
Galois group is isomorphic to the ideal class group of the ground field it extends. In
order to do so, we shall first need to introduce the so-called Artin symbol.

Proposition 5.3. Let L/K be a Galois extension of number fields, let p be a prime of
K which is unramified in L, and let P be a prime of L lying above p. There is a unique
element σ ∈ Gal(L/K) with

σ(α) ≡ αN(p) mod P

for all α ∈ OL.

Proof. The assumption that p be unramified in L is crucial; the order of TP is 1 when p
is unramified and so Theorem 5.1 gives us an isomorphism

ZP
∼= Gal(FP/Fp).

Being that FP/Fp is a finite field, its Galois group is a cyclic group generated by a
Frobenius element Frobp : x 7→ x|Fp|. Since |Fp| = N(p) by definition, this proves the
existence of such an element of Gal(L/K) (since ZP ≤ Gal(L/K)). For uniqueness,
suppose σ′ ∈ ZP and x ∈ P, so that σ′(x) ≡ xN(p) ≡ 0 mod P. Then σ′(x) ∈ P, and so
σ′(P) = P. Thus, σ′ ∈ ZP and both σ and σ′ are mapped to Frobp by the isomorphism.
The injectivity of an isomorphism ensures that σ = σ′.

This element of Gal(L/K) is called the Artin symbol8 and is written(
L/K

P

)
(α) ≡ αN(p) mod P.

7In fact, in a more modern view of algebraic number theory, infinite primes are identified with so-
called archimedean valuations, and finite primes with non-archimedean valuations. We shan’t discuss
this here.

8Named for Emil Artin, a famous expositor of Galois theory.
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We list a few interesting properties of the Artin symbol. Let p be unramified in L and
let P be a prime of L lying over p. Firstly, by the uniqueness of the Artin symbol, we
have (

L/K

σ(P)

)
= σ

(
L/K

P

)
σ−1

for some σ ∈ Gal(L/K). This follows from the fact that decomposition groups are
conjugate by elements of Gal(L/K). Secondly, the order of ((L/K)/P)) is exactly the
inertial degree of P over p. This follows immediately from the fact that the Artin symbol
maps to a generator of Gal(FP/Fp) under the isomorphism in Proposition 5.3, and the
order of Gal(FP/Fp) is the inertial degree of P over p. Finally, we note that p splits
completely in L if and only if ((L/K)/P) = id. Since we are already assuming that p
is unramified, we have e(P/p) = 1, and so for p to split completely we need only that
f(P/p) = 1, which is exactly the statement that the Artin symbol is the identity.
Particularly interesting is the case when L/K is an Abelian extension. Indeed, in this
case, the previous paragraph shows that the Artin symbol depends only on the prime
p of K lying below P. To see this, recall that the action Gal(L/K) on the primes of L
is transitive, and so for any two primes P,P′ of L there is an element σ ∈ Gal(L/K)
such that σ(P) = P′. Thus, we have(

L/K

P′

)
=

(
L/K

σ(P)

)
= σ

(
L/K

P

)
σ−1 =

(
L/K

P

)
.

Instead of writing ((L/K)/P), since the dependence is only on p, we write ((L/K)/p).
Since L/K is an unramified extension, the Artin symbol is defined for all primes of
L, and so we can extend the Artin symbol to all ideals of OL. That is, given an ideal
a ⊂ OL, we have a unique factorisation into primes of OL (by Section 3). We write

a = Pa1
1 . . .Par

r

where Pi are such that pi = Pi ∩ OK is a prime of OK lying below Pi. We specify the
Artin symbol on a to be the map(

L/K

a

)
=

r∏
i=1

(
L/K

pi

)ai
.

As a consequence of this, the Artin symbol induces a homomorphism IK → Gal(L/K)
called the Artin map. We write(

L/K

·

)
: IK → Gal(L/K).

When L is the Hilbert class field of K then the Artin map is surjective9 and the ker-
nel is exactly the subgroup PK of principal ideals of IK . Consequently, by the first
isomorphism theorem, the Artin map induces an isomorphism

IK/PK = Cl(OK) ∼= Gal(L/K)

which is what we set out to show.
9The proof of both of these facts requires the heavy machinery of class field theory and so will not

be presented here.
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In fact, the Artin map is in some sense a generalisation of quadratic reciprocity to
higher powers. For instance, we can re-obtain the Legendre symbol from the Artin
symbol as follows: in the notation of the preceding discussion, let K = Q and let
L = Q(

√
2). Then, as the Artin map is a Q-automorphism of L, we only need know the

image of
√

2 under this map. Indeed, we have(
Q(
√

2)/Q
p

)
(
√

2) ≡
√

2
N(p)
≡ 2

p−1
2

√
2 ≡

(
2

p

)
(
√

2) mod p

where (2/p) is the usual Legendre symbol. Note that we only defined the Artin symbol
for unramified primes of the ground field. Indeed, this goes some way to explaining
why there is a supplementary law for the case where p = 2; if K = Q(

√
d) is such that

d ≡ 2, 3 mod 4 then 2 always ramifies in K (since 2 | dk in this case!).
Pending the proof of a few lemmas, we shall construct the Hilbert class field of K =
Q(
√
−17) (Exercise 5.25 in [11]).

Lemma 5.1. Let K be a number field and L a Galois extension of K such that L =
K(α) for some α ∈ OL and such thatOL = OK [α]. Letm(X) be the minimal polynomial
of α over K so that m(X) ∈ OK [X]. If p is a prime of K and m(X) is separable modulo
p then

(i) the factorisation of p in L depends on the factorisationm(X) ≡ π1(X) . . . πg(X) mod
p where the πi(X) are distinct irreducible factors of m(X). In particular, Pi =
pOL + πi(α)OL is a prime ideal in OL and p = P1 . . .Pg. In addition, all of the
πi(X) have the same degree and this is equal to the inertial degree f ,

(ii) p is unramified in L,
(iii) p splits completely in L if and only if m(X) ≡ 0 mod p has a solution in OK .

Proof. For (i), the reader is referred to [5, p.63, 64] for a proof. For (ii), we note that if
m(X) is separable modulo p then there are no repeated factors in the factorisation of
m(X) modulo p and so by (i) this implies that p is unramified in L. For (iii), if m(X) has
a root in OK then one of the πi(X) has degree 1, and so by (i), all of the πi(X) have
degree 1. Since this corresponds to the inertial degree f of the Pi in the factorisation
of p and the ramification indices of each of the Pi is 1, we have g = [L : K], i.e. p splits
completely in L.

Lemma 5.2. Let L = K(
√
u) and let p ⊂ OK be a non-zero prime ideal. Then

(i) if 2u /∈ p then p is unramified in L, and
(ii) if 2 ∈ p but u /∈ p and u = b2 − 4c for some b, c ∈ OK then p is unramified in L.

Proof. The discriminant of X2 − u ∈ OK [X] is 4u. By assumption we have that 2u /∈ p
and hence10 4u /∈ p. Lemma 5.1 says that X2 − u is separable modulo p and so it is
unramified in L.
For (ii), note that we can write L = K(α) where α = −b+

√
u

2
is a root of the polynomial

X2 + bX + c ∈ OK [X]. Thus, if u = b2 − 4c, the discriminant of this polynomial, and
u /∈ p, then again by Lemma 5.1 we have that p is unramified in L.

10If 4u ∈ p then 2 ∈ p or 2u ∈ p because p is a prime ideal. But 2u /∈ p by assumption so 2 ∈ p, which
is a contradiction since 2u /∈ p implies that 2 /∈ p.
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Example 5.1. Let K = Q(
√
−17). We shall show that the Hilbert class field H of K is

H = K(α) where α =
√

1+
√

17
2

.
We first begin by showing that Cl(OK) ∼= Z/(4), since this tells us that Gal(H/K) ∼=
Z/(4) and hence that H has degree 4 over K. The discriminant of K is dK = −68, the
degree of K/Q is 2 and there is exactly one pair of complex embeddings of K into C,
namely complex conjugation. Thus, we have the Minkowski bound

MK =
2!

22

(
4

π

)√
|−68| ≈ 5.25 . . .

and so we need only check primes of OK lying above 2, 3, and 5. Indeed, we have
X2 + 68 ≡ X2 mod 2, so 2Z ramifies in OK , X2 + 68 ≡ X2 + 2 ≡ (X − 1)(X + 1) mod 3
so 3Z splits in OK , and X2 +68 ≡ X2 +3 mod 5, which has no solutions so 5Z is inert in
OK . Let 2OK = p2

2, 3OK = p3p̄3, and 5OK = p5, so that N(p2) = 2, N(p3) = N(p̄3) = 3,
and N(p5) = 25. Thus, we have11 p2 ∼ p−1

2 , p3 ∼ p̄−1
3 , and p5 ∼ 1 in Cl(OK). The

norm of 1 +
√
−17 is N(1 +

√
−17) = 18 = 2 × 32 so the we have a principal ideal

(1 +
√
−17) = p2p

2
3 and hence that p2

3 ∼ p2, so we may eliminate p2 from the generating
set of Cl(OK) and focus on determining the order of p3 in Cl(OK). Since a2 + 17b2 = 3
has no solutions with a, b ∈ Z, we know at least that p3 is itself non-principal. Since
we just showed that p2

3 ∼ p2 and a2 + 17b2 = 2 has no integral solutions, we also have
that p2

3 6∼ 1. Additionally, a2 + 17b2 = 33 = 27 has no solutions, since if this were the
case then a2 ≡ 10 mod 17 would have solutions, which is easily checked to be false by
calculation, and so p3

3 is non-principal. Finally, we have N(8 +
√
−17) = 81 = 34 and

so (8 +
√
−17) = p4

3, showing that p4
3 ∼ 1, and hence that Cl(OK) is the cyclic group of

order 4 generated by the ideal class of p3.
We have now shown that Cl(OK) ∼= Z/(4) and so Gal(H/K) ∼= Z/(4), so that H is a
degree 4 Abelian extension of K. Following this, we shall show that there is a tower of
extensions K ⊂ K1 ⊂ H such that K1 is unramified over K and H is unramified over
K1. Clearly the multiplicativity of the exponents of prime ideals means then that H is
unramified over K, so this shall be an easier route.
Since α =

√
1+
√

17
2

we have 2α2−1 =
√

17 ∈ H and so we first show that the extension
K1 = K(

√
17) is unramified12 over K. Let p be a prime of K and suppose 2 ∈ p.

Then certainly 17 /∈ p since 17 − 8 · 2 = 1 /∈ p (since it is a prime ideal) and since
17 = 12−4·(−4), Lemma 5.2 says that p is unramified in K1. Now, notice that

√
17 ∈ K1

and
√
−17 ∈ K so that

√
17/
√
−17 =

√
−1 ∈ K1 so that K1 = K(

√
−1). Thus, u = −1

is certainly not an element of p and if 2 /∈ p then 2u /∈ p and so p is unramified in
K1. We now move on to showing that H = K1(

√
u) is an unramified extension, where

u = 1+
√

17
2

. Let u′ = 1−
√

17
2

. Then uu′ = −16
4

= −4 so that
√
uu′ = 2

√
−1 ∈ K1.

Thus, since
√
u′ = 2

√
−1√
u
∈ H, we have H = K1(

√
u) = K1(

√
u′). Following this, let

P be a prime of K1. It must always be the case that either u or u′ is in P, but never
both, since u + u′ = 1. Thus, if 2 /∈ P then either u /∈ P or u′ /∈ P and the fact that
K1(
√
u) = K1(

√
u′) gives us that P is unramified in H. Now, note that u and u′ both

11Note the abuse of notation; we mean of course that the ideal classes of p2 and p−1
2 are equivalent,

though the notation [p2] quickly becomes cumbersome.
12Note that since K is an imaginary quadratic field, and 2 = r1 + 2r2 where r1 is the number of real

embeddings of K into C and r2 the number of pairs of complex embeddings, we have r2 = 1 and r1 = 0
so there are no real infinite primes to ramify!
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satisfy X2−X−4 ∈ OK1 [X] and so since u /∈ P or u′ /∈ P, we have u =
(

1+
√

17
2

)2

−4·1,
and so P is unramified in H by Lemma 5.2.
Putting these results together, we have that K1 is an unramified extension of K and
that H is an unramified extension of K1. Thus, H is an unramified extension of K.
Additionally, we showed that H is an Abelian extension of K whose Galois group is
isomorphic to the ideal class group of K, and so H is the Hilbert class field of K.

6 Conclusions
To conclude I’d like to discuss some of the implications of the ideas discussed in sec-
tions 4 and 5 and how they might lead to future study and/or research.
Firstly, let us recall some of the main issues with Kummer’s proof discussed in Section
4. The most important step in the proof of both cases was in factoring the left hand side
of the equation xp + yp = zp over Z[ζp], translating this into the language of ideals, and
obtaining information about the prime decomposition of such ideals (possible because
Z[ζp] is a Dedekind domain, which we know courtesy of Section 3!). In both cases we
were able to conclude that the factors of xp+yp, as ideals, were equal to the pth power
of some ideal in OZ[ζp] and that, due to the lack of p-torsion in the ideal class group
of OZ[ζp] (given by the regularity assumption on p), this meant that these factors must
be principal. The main obstruction, then, to a full proof of Fermat’s last theorem is in
the potential p-torsion in the ideal class group of Z[ζp]. For example, when p = 37,
we have that Cl(Q(ζ37)) ∼= Z/37Z and so there is 37-torsion in the ideal class group
of Z[ζ37]. Of course, this means that, in Kummer’s proof, we can no longer make the
assumption that for an ideal a ⊂ Z[ζ37], if a37 is principal then a is principal. In future it
would be interesting to look into Iwasawa Theory13. In particular, if p is not a regular
prime (i.e. p | hQ(ζp)), Iwasawa theory aims to get information on the p-part of the ideal
class group of Z[ζp] by constructing infinite extensions over Q called Zp-extensions
(extensions whose Galois group is isomorphic to the additive group of p-adic integers).
This requires the study of infinite Galois theory 14, the theory of local fields (of which
Qp, whose ring of integers is Z[ζp], is an example), and some analytic theory.
Secondly, Section 5 discusses the Hilbert class field. This was described as the max-
imal unramified Abelian extension of a number field, its Galois group was seen to be
isomorphic to the ideal class group of the ring of integers of the base number field,
and it was the unique field satisfying these properties. We might instead be interested
in describing the maximal Abelian extension A of a number field K (this time dropping
the unramified property). In this case, things become much harder. This extension
has infinite degree over K and so its Galois group is (as in the footnote) a profinite
group. The open subgroups (with respect to the restricted product topology) of finite
index are associated, by the Galois correspondence, to finite Abelian extensions of K,
and such extensions are called class fields, for which the theory is named. One very
explicit outcome of class field theory is the Kronecker-Weber theorem, which says that
every Abelian extension of Q is contained in some cyclotomic extension. The study of
class field theory requires, among other things, more study of topological groups, and
local field theory (as above).

13Named for Kenkichi Iwasawa.
14The Galois groups of infinite towers of field extensions are called profinite groups. These are topo-

logical groups that are isomorphic to the projective limit of some inverse system of groups (in particular
the Galois groups of the intermediate extensions!).
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