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Abstract  
The main focus of this review will be to examine the current understanding of the 
causes and consequences of salmonid hierarchies as well as the implications to wild 
populations and aquaculture. Salmonid dominance hierarchies readily form under 
laboratory conditions, this has allowed extensive research into social structures. 
There is limited research into the causes of social status, however, the cause is likely 
to be a combination of standard metabolic rate, body size and prior competitive 
experience. A wide range of research outlines the consequences of social status 
from behavioural changes in aggression and submission to physiological changes in 
disease resistance, the stress response of fish, responsiveness to additional 
stressors and varied growth rates to name just a few. 
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Introduction 
In environments where resources such as food and shelter are limited, the need for a 
stable social hierarchy is necessary (Chapman, 1966; Gurney, 1979). Stable 
hierarchies avoid excessive competition over resources and reduce energetic costs 
involved in fighting. The first documented dominance hierarchy was found in 
chickens which developed a linear pecking order (Schjelderup-Ebbe, 1922). 
Salmonid hierarchies have been extensively researched. An individual in a social 
hierarchy can be deemed to be either dominant or subordinate. There are clear 
behavioural distinctions between dominant and subordinate individuals. Dominant 
individuals show increased aggressive behaviours where as subordinate individuals 
are characteristically more submissive (Gilmour et al., 2004). Dominant salmonid fish 
generally occupy a mid-water position using rheotaxis to orientate facing into the 
water flow (Keenleyside and Yamamoto, 1961). This ensures the maximum chance 
of obtaining food travelling downstream. Subordinate salmonid fish generally occupy 
the water surface or the bottom. This position is disadvantageous as the chance of 
finding food is reduced and may also increase aerial predation risk to fish occupying 
the water surface, but reduces aggressive encounters with dominant fish. There are 
also a large number of physiological changes associated with social status. For 
example, body and sclera colour, circulating corticosteroids and growth rates differ 
between fish of different status (Cutts et al., 1998; Barton, 2001; Suter and 
Huntingford, 2002).  
 
Causes of social status 
It was initially believed that individual size differences affected social status with 
larger fish becoming dominant (Abbott et al., 1985). However, it is difficult to 
untangle whether a larger body size is a cause or a consequence of social status. 
This view has also been challenged by Rhodes and Quinn (1998) and Johnsson et 
al. (1999) where size disparity was only shown to effect contest outcome when the 
difference was significantly larger. 
          Standard metabolic rate (SMR) prior to social contests has been demonstrated 
to be a physiological factor affecting the outcome of social status (Cutts et al., 1998). 
High metabolic rate is thought to increase the competitive ability of a fish, where high 
SMR is associated with a dominant fish and a low SMR with subordinates. This 
pattern of dominant individuals having a higher standard metabolic rate has been 
corrected for relative size, weight and date of first feeding (Metcalfe et al., 1995). As 
well as being a cause of social status, standard metabolic rate has been shown to 
change with social interaction. For example, subordinate brown trout, Salmo trutta, 
showed a greater change in standard metabolic rate after the formation of a 
hierarchy than dominant individuals which showed a lesser change (Sloman et al., 
2000). However, other studies have shown that metabolic rate may not be related to 
aggression or dominance, but to other  factors such as environment and more 
abundant food sources (Seppanen et al., 2009). Alvarez and Nicieza (2005) showed 
that the positive relationship between metabolic rate and growth rate, thus inferring 
social status from growth rate, may not be representative of natural populations that 
are more complex than laboratory dyad experiments.  
 
Determining social status 
Social hierarchies in salmonid pairs of fish are often measured using behavioural 
scoring techniques (Keenleyside and Yamamoto, 1961; Ejike and Schreck, 1980; 
Sloman et al., 2001a; Sloman et al., 2001b). Few studies have examined the social 
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hierarchies associated with wild fish populations due to the constraints of observing 
and sampling in the field. Behavioural observations can be clear, non-invasive 
indicators of status through levels of aggression, position in the water column, body 
and sclera colour and food acquisition. In behavioural studies, a fish which is more 
aggressive, occupies a more profitable position and has paler body and sclera 
colouration is deemed dominant (Huntingford and deLeaniz, 1997; Gilmour et al., 
2004). It should be noted that status is relative rather than absolute.    
         Physiological measurements are also used to assess hierarchies. There are 
numerous studies relating social stress to an increase in circulating corticosteroids, 
primarily cortisol (Ejike and Schreck, 1980; Pickering and Pottinger, 1989; Sloman et 
al., 2001a; Sloman et al., 2002). Analysis of blood plasma cortisol concentrations 
can re-affirm the social status deduced from behavioural observations, where 
dominant fish have repeatedly been shown to have lower plasma cortisol 
concentrations (Ejike and Schreck, 1980; Sloman et al., 2001a; Gilmour et al., 2004). 
Body and sclera colour have been shown to darken in subordinate individuals as a 
signal to a dominant fish to lower aggression and reduce the energetic cost and 
potential fatalities of prolonged fighting (O'Connor et al., 1999; Suter and 
Huntingford, 2002). Höglund et al. (2000) showed a quantifiable method, through 
image analysis, of determining body and sclera colour where a significant darkening 
of colour was associated with subordinance in Arctic charr, Salvelinus alpinus. 
Measurements of hepatic glycogen content can also indicate social status. 
Subordinate individuals typically have lower hepatic glycogen content than dominant 
fish (Ejike and Schreck, 1980). This allows subordinate fish to cope metabolically 
with social stress by increasing blood plasma glucose concentrations. 
 
Response to the stress of social interaction 
Laboratory experiments examining the endocrinology of salmonid hierarchies give a 
deeper insight to the causes and consequences of social stress. Three main 
categories exist of response to stress by fish, the primary, secondary and tertiary 
response. The primary response is mainly the neuroendocrine effects of stress, for 
example the stimulation of the chromaffin tissue to release catecholamines and 
cortico-steroids from the hypothalamic-pituitary-interrenal (HPI) axis (Evans and 
Claiborne, 2006). The secondary response to stress includes the biochemical and 
physiological changes that are induced by the primary response. The main change is 
the increase of plasma glucose concentrations making more energy available to the 
tissues of a stressed fish (gills, muscles etc.) allowing it to cope metabolically with 
stress (Sloman et al., 2006). The tertiary response to stress is a whole organism or 
population response, chronic stressors cause fish to divert energy away from 
processes such as reproduction and growth (Evans and Claiborne, 2006). 
         The hypothalamo-pituitary-interrenal axis (HPI) is the source of the primary 
stress response in teleost fish (Winberg and Lepage, 1998) which is stimulated by 
brain monoaminergic activity. The activity of the dopaminergic, norepinephric and 
serotonergic systems in the brain are believed to alter the sensitivity to stressors 
(Øverli et al., 2001). The release of dopamine and norepinephrine are associated 
with the fight or flight response to stress (Winberg and Nilsson, 1993), allowing a fish 
to recover from the effects of a stressor. The association of dopamine and 
dominance has been demonstrated by Winberg and Nilsson (1992) where L-Dopa 
(the precursor to dopamine) exposure increased aggression and chances of 
becoming dominant. The release of serotonin has the opposite effect to that of 
dopamine and norepinephrine, causing a withdrawal response (Gilmour et al., 2004). 
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This causes a fish to cope with a stressor rather than recover from a stressor. For 
example, it has been shown that an increase in serotonin increases plasma cortisol 
concentrations through stimulation of the HPI axis (Winberg and Lepage, 1998) 
allowing an individual to cope with stress. Dominant and subordinate individuals 
experience an initial increase in brain serotonergic activity, in dominant individuals 
this is temporary as it is counteracted by an increase in dopaminergic activity. 
However, in subordinate individuals, serotonergic activity remains elevated (Øverli et 
al., 1999a). Chronic elevation of serotonin causes the inhibition of aggressive 
behaviours, activity and appetite, characteristic of social subordinance (Winberg et 
al., 1997; Øverli et al., 1998). The inhibition of the HPI axis through increased 
dopaminergic activity is associated with dominant individuals where as increased 
serotonergic activity stimulating the HPI axis is associated with subordinance 
(Winberg and Nilsson, 1993). Measuring brain monoaminergic activity in individuals 
under laboratory conditions can be a useful indicator of the effects of social stress.          
         The stimulation of the HPI axis causes the release of corticosteroids and 
catecholamines from the steroidogenic cells and chromaffin tissue located 
respectively on the anterior kidney (Evans and Claiborne, 2006). The release of 
catecholamines from the chromaffin tissue of the anterior kidney is a rapid response 
to stress. It is such a quick response that sampling catecholamine concentrations is 
difficult as the act of catching and sampling an individual results in an increase in 
circulating catecholamines (Barton, 2001). This makes it difficult to determine 
whether sampling or other stressors are responsible for the increased circulating 
catecholamine concentrations. Catecholamine release aids a fish during stressful 
interactions by optimising respiratory and cardiovascular functions (Barton, 2001). 
Catecholamine release also mobilises stored energy reserves, primarily hepatic 
glycogen (Evans and Claiborne, 2006). The release of cortisol in response to stress 
is associated with regulating energy metabolism but adversely affects ionoregulation 
in subordinate individuals (Sloman et al., 2004). Corticotropin-releasing factor (CRF) 
in the hypothalamus stimulates the release of adrenocorticotropic hormone (ACTH) 
from the anterior pituitary which causes cortisol secretion (Sloman et al., 2002). 
Cortisol, unlike catecholamines, is a long term stress hormone. Chronic elevation of 
cortisol maintains gluconeogenesis, increasing plasma glucose concentrations from 
stored liver glycogen (Enes et al., 2009) that enable fish to deal with stress and its 
metabolic costs. 
 
Effects of chronic social stress 
Subordinance is characterised by a reduction in growth rate (Li and Brocksen, 1977; 
Sigourney et al., 2008). A reduced growth rate can be explained by dominant 
individuals acquiring a disproportionate amount of food (Cutts et al., 1998). As well 
as exclusion from food sources, it has been shown by Sloman et al. (2000) that 
subordinance also carries a metabolic cost which can cause a reduction in growth 
rate as energy is diverted from growth to coping with stress. Chronic serotonergic 
activity also causes appetite suppression affecting growth rate (Øverli et al., 1998). 
Social subordinance can also cause deterioration in the condition of the fish. Due to 
the aggressive nature of social contests subordinate individuals may sustain more 
damage to fins. 
         The constant activation of the HPI axis causes subordinate fish to be 
desensitized to further stressors, which could be disadvantageous. Øverli et al. 
(1999b) demonstrated that subordinate Arctic charr were not capable of increasing 
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cortisol secretion to cope with the stress of handling where as dominant individuals 
were able to significantly increase cortisol concentrations. 
         Chronic elevation of plasma cortisol, a consequence of prolonged social stress, 
has been shown to suppress the immune system of brown trout. Brown trout treated 
with doses of cortisol characteristic of fish with low social status were observed to be 
more susceptible to bacterial and fungal pathogens which increased mortality rates 
(Pickering and Pottinger, 1989). Competing rainbow trout were also shown to be 
more susceptible to bacterial pathogens (Peters et al., 1988). A similar effect has 
also been shown in Coho salmon, Oncorhynchus kisutch, suppressing the immune 
system by reducing the amount of anti-body secreting cells (Maule et al., 1987). 
 
Unstable social hierarchies  
There are numerous ways that hierarchy formation can be disrupted, or how 
established social structures may become de-stabilized. The destabilization of a 
hierarchy is necessary in salmonid aquaculture to prevent dominant individuals 
consuming a disproportionate amount of food and out-growing subordinate 
individuals (Cutts et al., 1998) but may be disadvantageous to wild populations. 
There are a number of methods used in aquaculture to prevent hierarchy formation, 
for example serial removal of the largest fish excludes the most dominant fish from a 
hierarchy allowing less competition for subordinates to grow (Huntingford and 
deLeaniz, 1997). However, as there are already established hierarchies when 
removing the largest fish, it may be better to select for less aggressive fish before 
interaction as demonstrated by Øverli et al. (2006). As previously discussed, the 
initial SMR of eventual subordinate fish is lower than that of eventual dominants. 
Selecting for a stock of fish with low SMR may cause less aggression and lead to 
uniform growth. 
 There are other environmental factors to consider in order to destabilize a social 
hierarchy. Water flow encourages fish to use rheotaxis to orientate facing into the 
direction of flow in anticipation for food. Maintaining position in a strong water flow 
has a higher energy demand, and therefore decreases the aggression in stocks of 
fish to reduce energetic expenditure (East and Magnan, 1987; Adams et al., 1995). 
Giving food from a point source allows this source to be defended and hierarchies 
formed (Alanara and Brannas, 1996), randomising the distribution of food can 
prevent formation of hierarchies. Increasing the amount of food can also decrease 
aggression as more food leads to less competition (Davis and Olla, 1987). 
Laboratory experiments on salmonid social structures have been fundamental in 
understanding how to destabilize and breakdown hierarchies for the use of 
aquaculture. These experiments have allowed salmonid aquaculture to rear fish in 
less stressful conditions and commercially produce better quality fish.  
         Disruption of social structures is useful in aquaculture, however, disrupting 
natural populations of fish can lead to increased competition and potential mortality 
to individuals. There are numerous studies detailing the disruptive effects of 
pollutants and heavy metals. Depending on the action of a substance it may disrupt 
the formation of a hierarchy or breakdown established hierarchies (Sloman, 2007).  
          Turbid environments have been shown to affect predation, reaction time, 
foraging behaviour and habitat preference in salmonids (Barrett et al., 1992; 
Gregory, 1993; Gregory and Levings, 1998; Sweka and Hartman, 2001; Meager and 
Batty, 2007; Meager and Utne-Palm, 2008). It may be expected that increased 
turbidity would affect social contests by potentially losing visual signals of 
subordinance or being unable to judge an opponent’s competitive ability. This was 
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shown by Berg and Northcote (1985) where high turbidity destabilised established 
hierarchies which were only re-established when turbidity decreased. 
           As well as examples of how ionoregulation and development can be affected 
(Brauner and Wood, 2002; Kamunde et al., 2002; Chowdhury et al., 2004), there are 
many examples of how toxicants such as heavy metals can affect the formation of 
social structures in salmonid fish by disrupting hormonal, neurological, metabolic and 
sensory systems (Sloman et al., 2003a; Scott and Sloman, 2004; Campbell et al., 
2005; Sloman, 2007). Cadmium has been shown to affect the duration as well as the 
levels of aggression in contests between rainbow trout, Oncorhynchus mykiss 
(Sloman et al., 2003b). Social status also has an effect on the accumulation of 
cadmium with dominant fish accumulating more at the gills than subordinates 
(Sloman et al., 2003b). Similarly, dietary copper exposure in rainbow trout causes a 
decrease in the duration and aggression of contests and lowers the competitive 
ability of fish with copper exposed fish becoming subordinate to non-exposed 
opponents (Campbell et al., 2005). Hawryshyn et al. (1982) demonstrated rainbow 
trout exposed to methyl mercury experienced an impairment in vision. This 
impairment was not tested in a social contest aspect, however, it would be expected 
that a decreased ability to judge an opponent and receive visual signals would cause 
a disadvantage to the exposed fish and possibly destabilise a social structure. 
Salmonid experiments linking the physiological and behavioural implications of 
toxicant exposure are key to understanding potential effects on natural populations 
where anthropogenic exposure is probable. 
 
Communication 
Atlantic salmon, Salmo salar, darken the colour of the sclera and body to indicate 
subordinance (O'Connor et al., 1999). This change in colour occurs in subordinate 
fish after a period of sustained attacks from opponent fish. Colour change causes a 
decrease in the aggressive behaviours of the dominant fish towards the subordinate. 
During competition, visual signals serve as important cues to opponents. However, 
signals of social status such as body and sclera colour can also message to 
individuals other than those intended receivers (Oliveira et al., 1998). The ability to 
‘eavesdrop’ on social contests is a method of further reducing the costs of forming a 
social hierarchy. Johnsson and Akerman (1998) demonstrated that rainbow trout are 
able to judge their chances of dominating an opponent based on observing an 
opponents previous contest. Ability to recognise previous opponents has also been 
demonstrated to lower aggressive encounters (Johnsson, 1997). The effects of 
social interaction on body and sclera colour can be rapid, occurring within a minute 
and can fluctuate according to the level of aggression (Suter and Huntingford, 2002). 
Suter and Huntingford (2002) also showed that darkening is a useful indicator within 
natural populations as well as laboratory experiments. Experiments were carried out 
using groups of fish rather than pairs in a semi-natural environment. Fluctuations in 
body and sclera colour throughout the 20-day period show colour darkening to be a 
temporal variation where as other studies (O'Connor et al., 1999) had previously 
treated darkening as an end point to a contest. This demonstrates how dynamic 
natural populations behave in relation to laboratory dyad experimental contests.  
         Melanin-concentrating hormone (MCH) and melanocyte-stimulating hormone 
(α-MSH) control colour darkening in salmonid fish. Baker (1993) demonstrated the 
darkening effects of exposing isolated salmonid scales and skin to MCH. Skin 
darkness of Arctic charr has been positively correlated to blood plasma α-MSH 
concentrations by Höglund et al. (2000). Höglund et al. (2000) also found a positive 
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correlation between the concentrations of α-MSH and ACTH to plasma cortisol 
concentrations suggesting social stress to be the cause of colour change mediated 
by serotonin and norepinephrine in the central nervous system. Environmental 
factors such as background colour have been shown to effect darkening (Höglund et 
al., 2002). Arctic charr engaged in social contests against a dark background 
exhibited less aggression as fish had colour matched the background. Colour 
matching made both fish darker, signalling for less aggression where as fish 
competing against a light background had significantly more aggressive contests. 
These experiments explain how colour change is used by subordinate individuals to 
signal defeat and lower aggression, the use of colour change is essential in forming 
a stable social hierarchy and a good observational indicator of status. 
 
Migration 
Migrating species face additional stressors of adapting to new environments. 
Smoltification is a series of physiological changes an anadromous salmonid fish 
undergoes to adapt to the migration from freshwater to seawater. Smoltification is 
believed to be controlled by seasonal changes in environmental factors such as 
photoperiod and temperature (Björnsson et al., 1989) and a change in hormones, 
plasma cortisol in particular (Shrimpton, 1996). Stable hierarchies allow larger and 
therefore dominant fish to grow and smolt and allow subordinate fish to delay 
smoltification until there is less competition (Heggenes and Metcalfe, 1991). 
Smoltification is commonly associated with the loss of parr marks from the body to a 
silver colouration as well as an increase in the Na+K+ATPase activity and chloride 
cell density at the gills (Shrimpton, 1996; Nielsen et al., 2004). Coho salmon that 
were larger in body size and therefore dominant were shown to have an increased 
Na+K+ATPase activity thus being able to cope with seaward migration earlier 
(Shrimpton, 1996). Smaller subordinate individuals of this population of Coho salmon 
did not show any physiological changes associated with smoltification until much 
later in the year. Nielsen et al. (2004) has also shown that migratory behaviour can 
be predicted by determination of Na+K+ATPase activity in wild populations of brown 
trout. These experiments have been useful in understanding the effects of social 
status on migration and life strategies of fish. It is also important to predict social 
status and migratory behaviour in aquaculture in order to protect stocks of fish and 
individual stress by moving only those which are ready to sea. Atlantic salmon 
transported from freshwater to seawater in aquaculture have been shown to quickly 
recover behaviourally and physiologically from the transport process (Nomura et al., 
2009). 
 
Conclusion 
Laboratory experiments examining salmonid social structures have been useful in 
understanding the causes and consequences of social status. Extensive 
experiments have informed the varied topics associated with social hierarchies 
including formation, destabilisation and disruption, communication, behavioural and 
physiological response to stress and the effects on important life stages such as 
migration. Experiments are routinely carried out under laboratory conditions rather 
than on natural populations as many more observations can be made and variables 
can be ruled-out giving meaningful results. However, experiments using artificially 
created natural conditions or larger groups of fish can be more representative of 
natural populations and may be more relevant to draw conclusions and predictions of 
effects to natural stocks of fish. Experiments have improved the welfare and quality 
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of salmonid fish produced in aquaculture by destabilising hierarchies to allow uniform 
growth and lower levels of aggression. Further studies should focus on linking the 
physiological changes associated with social status to the behavioural implications. It 
may also be beneficial and more relevant for further experimentation to use larger 
groups of fish to represent natural populations. 
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