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Abstract

This paper addresses the problem of reaching and keeping a target position for a sailboat. A method to control sail angle is
proposed, using an adaptive adjustment of the sail to regulate the acceleration of the sailboat. A tacking strategy is de�ned
to navigate into the wind, arrive upwind to slow down the boat and then to stay close to the target point. Simulation results
show the e�ectiveness of the proposed approach. The stability of the sailboat using the proposed control has been proven.
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1 Introduction

Reaching and maintaining a specific position has many
applications for sailboats: collecting undersea data, get-
ting back a buoy, meeting another vehicle to exchange
materials at sea, or following an underwater vehicle to
transmit its information to the surface. However, numer-
ous factors such as wind orientation and velocity, pres-
ence of obstacles and complex dynamics of a sailboat
make it a challenging problem compared to motor boats.
Many low-level and high-level control systems design can
be found in literature [3, 5, 6, 7, 8, 9, 10, 11, 13] for var-
ious kinds of tasks. The problem caused by the complex
dynamics of a sailboat is exposed in [6, 7, 10, 13, 14],
while trying to obtain an accurate prediction of the sail-
boat behaviour. However, the major inconvenience of
these methods is that the control scheme can only be
made with a perfect knowledge of the dynamic parame-
ters of the sailboat, which are not always feasible in prac-
tice. In works like [3, 5, 9, 12], a line following control
has been developed, and a zigzag trajectory, named tack
strategy, is proposed to move upwind while staying in a
defined corridor. Two reference points or attractive ar-
eas (potential field method) are defined to orientate the
boat. Problems to reaching a target point and/or path
planning are studied in [1, 2, 4, 5, 8, 11]. However, these
techniques are developed to reach a position and move
to a new objective rather than maintain a specific posi-
tion during a long time. Indeed, keeping a position with
a sailboat is not simple due to wind and waves pushing
against the sailboat while its velocity is low.

In this paper, we aim to reach a static target position
and to stay therein. A high-level control method is pro-

posed to provide a coupled heading and speed of the
sailboat to converge to a target position and to main-
tain its position afterwards. In a second part, a low-level
control of the sail is exposed to respect the desired speed
and heading of the high-level control. Moreover, we de-
sire techniques developed in this paper does not require
any prior knowledge of dynamic parameters/model of
the sailboat to be controlled.

The outline of the paper is as follows. Problem statement
is described in Section 2.1 and model equation of the
sailboat is given in Section 2.2. The method to choose
rudder angle is defined Section 3.1. The method to deter-
mine sail angle using an adaptive approach, is described
in Section 3.2. The problem of reaching a target position
is described in Section 4. An approach to evaluate target
acceleration and orientation of the sailboat is proposed
in Section 4.2 and 4.3. Section 5 presents some simula-
tion results and Section 6 concludes the paper.

2 Problem description
2.1 Problem statement and parameter

Fig. 1. [6] Fixed distance parameters p6; p7; p8.

The following notation will be used in this paper:
� � : orientation of the sailboat,
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� v : velocity of the sailboat,
� ! : rotation speed,
� � : course angle,
� �r : angle of rudder, �r � �r;max with �r;max = �

4 .
� �s : angle of sail, j�sj � �s;max with �s;max = �

2
�  tw, atw: orientation and speed of the true wind,
� �: hauled angle which define the dead area. � = �

4 here.

2.2 Model equations

Inspired from [6], the sailboat dynamics is described by
the following non-linear differential equations

ẋ = v cos (�)� u sin (�) (1)

ẏ = v sin (�) + u cos (�) (2)

�̇ = ! (3)

p9v̇ = gs sin (�s)� grvp11 sin (�r)� p2v jvj
+ p1a

2
tw cos ( tw � �) (4)

p9u̇= �grup11 cos (�r)� p2u juj+ p1a
2
tw sin ( tw � �)

(5)

p10!̇ = gs (p6 � p7 cos (�s))� grvp8 cos (�r)� p3!v (6)

where all parameters pi can be found in Table 1, gs and
gr are respective forces on the sail and the rudder, given
by

grv = p5v
2 sin (�r) (7)

gru = p5u juj cos (�r) (8)

gs = p4aaw sin (�s �  aw) (9)

where Wp;aw = [aaw;  aw] is the apparent wind and
Wp;tw = [atw;  tw] is the true wind, exposed in sec-
tion 2.3. Terms p1a

2
tw represents the wind force on the

hull. We suppose here that the action of the wind on the
sail is compensated by the keel on u. Terms p2v

2 and
p3!v represent the tangential and the angular friction
force.

Remark 1 Since parameters p1; : : : ; p11 are di�cult to
obtain, control strategies proposed will not require them
and are independent of these system parameters. Thus
others systems with di�erent parameters are also appli-
cable.

2.3 True and apparent wind

Wind can be described in two different referential spaces.
True wind (tw) is the velocity atw and the direction of
the wind  tw measured in a fixed global referential. Ap-
parent wind (aw) is the velocity aaw and direction of the
wind  aw measured from the ship by the weather vane.
As exposed in [6], apparent wind can be evaluated from
true wind in Cartesian coordinate by

Wc;aw =
h
atw cos ( tw � �)� jvj ; atw sin ( tw � �)

i
and in corresponding polar coordinate as

Wp;aw =
h
aaw;  aw

i
=
h
jWc;awj ; atan2 (Wc;aw)

i

where atan2 is the arctangent function returning an an-
gle in the correct quadrant. Same transformation can be
made from apparent wind to true wind.

3 Low level control

In this section, low level controls of the sail and rudder
angle are exposed to follow a desired heading. Evaluation
of the desired direction will be proposed in Section 4.

3.1 Rudder angle

In classic works like [3, 5], rudder angle is evaluated using
the heading �. However, due to the sideway forces of the
wind, the course angle � and heading angle � are not
necessarily equal, see [11]. This discrepancy is mainly
observed when sailing close-hauled, drifting the sailboat
from a line it follows. Thus, combining ideas from [11]
and [5], we propose the following rudder control which
uses course angle to compensate the perturbations:

�r = �r;max sin
�
Θ� �̄

�
if cos

�
Θ� �̄

�
� 0 (10)

�r = �r;maxsign
�
sin
�
Θ� �̄

��
else: (11)

where �̄ is the desired orientation, Θ = � if cos (� � �)�
cos (��) � 0 with �� 2

�
0; �2

�
as design parameter angle,

Θ = � else.

3.2 Sail angle

In this section, a method to choose the sail angle is pro-
posed. It allows control of the acceleration of the sail-
boat by choosing the sail angle. First notice that since
the sail cannot hold against the wind, the angle of the
sail �s cannot exceed a limit angle defined by the appar-
ent wind. This condition can be expressed like in [6] as

�s 2 �sign ( aw) � [0; �s;M ] (12)

where �s;M = min (j� � j awjj ; �s;max).

In some cases, we desire to control the acceleration of
the boat v̇ using the sail adjustment �s. Due to the non-
linearity of (4), linearized outputs provokes singularities
as shown in [2]. Instead of that, the sail adjustment �s
can be chosen to be as close as possible of the desire ac-
celeration ˙̄v. However, the main inconvenience of such
methods like in [2] is the knowledge of dynamics parame-
ters of the sailboat, which are difficult to obtain. Thus, a
control of the �s without using dynamics parameters and
allowing to control sailboat acceleration is proposed.

The main idea is to take �s close to the limit angle �s;M
when we desire to be slow, i:e: reduce sail lift, and to
take �s close to the optimal sail angle when we desire to
speed up. Define the control of the sail with the following
steps:

� Let define the angular acceleration such

�̇�
s = �ks (v̇� � v̇) sign (�s) (13)
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with ks > 0 a design parameter and v̇� the desired
acceleration of the sailboat, which will be exposed in
Section 4.2. Using a discrete step dt, the angle obtain
using (13) is expressed as

��
s (t) = max

�
j�s (t)j+ �̇�

sdt; 0
�
: (14)

� If �̇�
s < 0, we desire to speed up. As exposed in [5, 3],

the optimal sail angle is

�opts =
�

2

 
cos
�
 tw � �̄

�
+ 1

2

!
(15)

Thus, one takes

�s = �sign ( aw) max
�
��
s ; min

����opts

�� ; �lim
s

��
(16)

where �lim
s = max (�s;M � ��s

; 0) and ��s
design pa-

rameter to avoid sail and apparent wind are aligned.
� If �̇�

s > 0, we desire to slow down. The limit angle is
defined by the apparent wind �s;M , one takes

�s = �sign ( aw) min (��
s ; �s;M ) (17)

The main advantage of this technique is the control of
the sailboat acceleration without knowledge of param-
eters p1; : : : ; p11. Moreover, this technique is simple to
implement with a smaller calculation time.

4 Reach target position

In this section, strategies are proposed to reach a static
target and to stay close to it. To achieve that, different
cases are studied with regard to the distance and orien-
tation between sailboat and its target. Problem state-
ment is exposed Section 4.1. A control of acceleration is
exposed in Section 4.2 to reach the target position with
a small velocity. Orientation of the sailboat is presented
in Section 4.3 to arrive upwind.

4.1 Problem statement

Reaching a target position might not be a difficult prob-
lem. However, keeping this position could be more chal-
lenging because sailboat position is not simple to control
with wind and waves pushing the sailboat far to its tar-
get. It requires the sailboat to arrive with a low velocity
and to perform small corrections to compensate action
of the wind and wave.

To help the sailboat to slow down when it is coming
close to the target, it is useful to arrive upwind, and keep
its orientation when the boat has reached its target to
move as little as possible. We define an area where the
sailboat will try to stay upwind called the target area,
and an area where the sailboat will maneuver to arrive
upwind called pre-arrival area.

Put pT = [xT ; yT ]
T

is the target coordinate and pS =

[x; y]
T

the sailboat coordinate. C (p; d) is the circle of
center p and radius d. Let define the following notations:

� C (pT ; dT ) with dT � 2rt is the target area, where
rt = p8+p7

sin(�r;max) is the turning radius, a non-holonomic

constraints of the sailboat. Consider the sailboat has
reached the target when kpS � pT k < dT .

� Area between C (pT ; dT ) and C (pT ; dM ) with dM �
dT + 2rt is the pre-arrival area. Manoeuvre to arrive
upwind while target starts inside.

Remark 2 Since rt corresponds to the turning radius,
C (pT ; rt) is the smaller circle boat can perform.

4.2 Control of velocity

The sailboat needs to reach the target position pT with
the smallest velocity possible. A proportional control is
used to solve this problem, allowing a reduced sailboat
velocity when it is close to the target. The sail opening
�s is evaluated using Section 3.2 with

v̇� = �kv (v � v0) + kpdST (18)

where v0 = max
�

0; u tan
�
� � �̃

��
, dST = kpS � pT k,

kp > 0, and kv > 2
p
kp. Note since the sailboat cannot

go backward easily, than why kv and kp must be cho-
sen as to obtain a behavior without overshoot. Proof of
control stability is exposed in Appendix A.

4.3 Orientation control

Fig. 2: Steps of ori-
entation control.

To reach the target point pT ,
the fastest way is to choose the
direct angle between the sail-
boat and its target. However,
some inconveniences like wind
orientation can force to choose
another path. Moreover, to help
the sailboat to slow down when
it is coming close to the target
and maintain its position, we
can imitate the behavior of an
experienced human sailor by ar-
riving upwind, and keeping its
orientation when the boat has
reached its target. Then, strat-
egy to define the desired orien-
tation �̄ proposed here is define
such that respect the different
areas exposed in Section (4.1):

� Step 1: Direct path. Let define the shorter path to the
target �� = phase (xT � x+ 1i (yT � y)).

� Step 2: Go round target. Since the sailboat is far to
this target, i:e: kpS � pT k > dM , it will follow this
angle to reduce this distance with it, like exposed in
Step 1. When kpS � pT k � dM , it arrives in the pre-
arrival area. Thus, if �� does not induce to arrive easily
upwind, a maneuver is made to go round the target
area:
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If (kpS � pT k 2 [dT ; dM ]) & (cos (�� �  tw) > 0) ;

If cos
�
��

�
 tw +

�

2

��
> cos

�
��

�
 tw �

�

2

��
�� = �� +

�

2

Else �� = �� � �

2
Else �� = ��

with � = phase (x� xT + 1i (y � yT )).
� Step 3: Tack strategy. To move upwind, we make one

tack. Variable q is the tack variable and update since
�� is not inside the dead area. If �� is inside the dead
area, q is used to select and keep the closer tack:

If cos ( tw � ��) + cos (�) > 0;

Put �̄ = ��

If cos (�� � ( tw + � � �)) > cos (�� � ( tw + � + �))

q = 1

Else; q = �1

Else �̄ =  tw + � + q�

� Step 4: Upwind strategy. When the sailboat is inside
the target area, we desire the sailboat moves as little
as possible. Thus, objective is to orient boat front the
wind.

If (kpS � pT k < dT ) & (v > 0) ;

�̄ =  tw + � (19)

�s = �sign ( aw) j� � j awjj (20)

If (kpS � pT k < dT ) & (v � 0) ;

�̄ =  tw + � � �sign (u) (21)

�s = �sign ( aw) min
����opts

�� ; �lim
s

�
(22)

To be more reactive, this strategy is maintained only
if v � 0 so as to counter-balance the wind effect.

Proof for the stability of the sailboat using the proposed
strategy is provided in Appendix A. Steps of previous
strategy are illustrated in Figure 2.

5 Simulation

5.1 Parameter

The performance of the proposed method is evaluated
considering six simulations with a duration of T = 200 s.
Parameters of the simulated sailboat are expressed in
Table 1. The radius of different areas are dM = 14 and
dT = 7. We choose ��s

= �
36 , ks = 5 with dt = 0:01,

kp = 1 and kv = 8. Target position is pT = [0; 0]
T

, for
example a buoy. The wind orientation and strength are
as follows:

� case 1: atw = 10,  tw = �
2

� case 2: atw = 5,  tw = �
2

� case 3: atw = 5 sin (2�t) + 10,  tw = �
2

� case 4: atw = 10,  tw = �
12 sin (2�t) + �

2

Fig. 3. Sailboat reaching the target point pT . Red arrow
shows wind direction. Pre-arrival area is represented by the
two red circles, target area is the green circle.

� case 5: atw = 5 sin (2�t) + 10,  tw = �
12 sin (2�t) + �

2
� case 6: atw = 5 sin (2�t) + 10,  tw = �

6 sin (2�t) + �
2

5.2 Results

Figure 3 illustrates the performance of the method. In all
cases, sailboat reaches the target area, stops inside, and
comes back to it when the wind puts the sailboat out.
Figure 3 also shows the distance between sailboat and
target remains lower than 6.4m after sailboat has entered
in the target area. Notice that the sailboat velocity is
kept close to zero, but never equal to it so as to stay
reactive. A case of the sailboat going round the target
point to arrive upwind is also observed. An animation is
available on https://youtu.be/mv-qqFQczs4.

6 Conclusion

In this paper, a method to reach a target point and to
keep the position for a sailboat has been defined. A con-
troller for rudder and angular sail is proposed, and a
desired acceleration of the sailboat to stop at the tar-
get point is exposed. A method of regulating the sail
angle is proposed and it is used to follow the desired ac-
celeration. This method does not require knowledge of
dynamic parameters to be implemented. Proof for the
stability of the sailboat using the proposed strategy has
been given. Finally, strategy to control sailboat orien-
tation have been defined to arrive upwind, making the
immobilization of the sailboat easier. Simulation results
shows the effectiveness of the approach.

In future works, this method will be implemented on a
real autonomous sailboat robot to test its effectiveness.
Case of a moving target will also be considered, induc-
ing a different strategy to stay close to the target. More-
over, path planning must be added to find a path in case
of obstacles or long trips, strategies described here are
only focused on the problem of maintaining the target
position rather than planning a path.

A Appendix: Proof of stability

In this section, proof for the stability of the proposed ap-
proach has been shown. This one is divided in two parts:
the convergence to the target area and the stability in
the target area. Two Lyapunov functions are expressed
to represent the different challenges of theses cases.

4



parameter value parameter value parameter value

p1 drift coe�cient 0.03 p5[kgs�1] rudder lift 1500 p9[kg] mass of boat 300

p2[kgs�1] tangential friction 40 p6[m] distance to sail 0.5 p10[kgm2] moment of inertia 400

p3[kgm] angular friction 6000 p7[m] distance to mast 0.5 p11� rudder break coe�cient 0.2

p4[kgs�1] sail lift 200 p8[m] distance to rudder 2

Table 1
Model parameters value, from [6]

A.1 Notations
Let define the target coordinate pT = [xT ; yT ] = [0; 0].
Note all problems can be transformed such as obtain
pT = [0; 0]. Let d be the distance between the target

and the sailboat such d =
p
x2 + y2, and �̃ = atan( yx ).

Using �̃, one can write x = d cos
�
�̃
�

and y = d sin
�
�̃
�

.

Remark �̃ = �� + �.
A.2 Convergence to the target area: d > dT
If d > dT , we desire to converge to the target area, i:e:
d2�d2

T � 0. Let define the candidate Lyapunov function
V = 1

2

�
d2 � d2

T

�
and show V is stable since d > dT . The

derivative if V is

V̇ = dḋ: (A.1)
Using (1)-(2), let study ḋ

ḋ =
2 (xẋ+ yẏ)

2
p
x2 + y2

=
d cos

�
�̃
�

(v cos (�)� u sin (�))

d

+
d sin

�
�̃
�

(v sin (�) + u cos (�))

d

= v
�

cos (�) cos
�
�̃
�

+ sin (�) sin
�
�̃
��

+ u
�

sin
�
�̃
�

cos (�)� cos
�
�̃
�

sin (�)
�

= v cos
�
� � �̃

�
� u sin

�
� � �̃

�
: (A.2)

Injecting (A.2) in (A.1), one has

V̇ = d
�
v cos

�
� � �̃

�
� u sin

�
� � �̃

��
(A.3)

It can be shown v > v0 � 0 if d > dT (see Ap-
pendix A.2.1). Let now consider the following cases. If

� = �̃+�, one has V̇ = �dv � 0. Else, we have to show

dv cos
�
� � �̃

�
� du sin

�
� � �̃

�
� 0: (A.4)

Remark cos
�
� � �̃

�
= cos (� � �� � �) = � cos (� � ��).

By following steps exposed in Section 4.3, one has
�̄ 2

�
�� � �

2 ; �
� + �

2

�
. Thus, since � is closed to �̄, one

has cos (� � ��) 2 [0; 1], so cos
�
� � �̃

�
� 0. Using it in

(A.4), one get

v � u tan
�
� � �̃

�
(A.5)

Then, since v � v0 with v0 = max
�

0; u tan
�
� � �̃

��
as shown in Section A.2.1, one has V̇ � 0. Using the
theorem of Lyapunov, V � 0 for d > dT and V̇ � 0,
prove the system is stable.

A.2.1 Proof v > 0 if d > dT
Consider d > dT . v is growing since v̇� � 0, i:e: (18)

�kv (v � v0) + kpdST > 0

v0 +
kp
kv
dST > v (A.6)

Then, v is decreasing/increasing since v = v0 +
kp

kv
dST >

0 and maintain at this velocity. Thus, v is kept positive.

A.3 Stability in the target area: d < dT
Due to strategy exposed in Section 4.3 and proof in Sec-
tion A.2, sailboat arrives upwind, i:e: cos ( tw � �) < 0.
This condition will be satisfied in all this section.

If d < dT , we desire v = 0 and u = 0. Let define the
candidate Lyapunov function VT = 1

2

�
v2 + u2

�
. The

derivative of V is

V̇ = vv̇ + uu̇

=
p4

p9
vaaw sin (�s �  aw) sin (�s)�

p5p11

p9
vv2 sin (�r)

2

� p2

p9
v2 jvj+ v

p1

p9
a2
tw cos ( tw � �)�

p5

p9
u2 juj cos (�r)

2

� p2

p9
u2 juj+ u

p1

p9
a2
tw sin ( tw � �) (A.7)

Note first �p2

p9
v2 jvj � 0, �p5

p9
u2 juj cos (�r)

2 � 0 and

�p2

p9
u2 juj � 0. Then

V̇ � v p4

p9
aaw sin (�s �  aw) sin (�s)�

p5p11

p9
vv2 sin (�r)

2

+
p1

p9
a2
tw (v cos ( tw � �) + u sin ( tw � �)) (A.8)

We have to show V̇ � 0 to prove the stability of the
system. Consider now � = �̄ and the two following case:
v > 0 and v � 0.

A.3.1 Case v > 0 and � = �̄:

In this case, the following control described in Section 4.3
is chosen (19)-(20). Moreover, since  aw 2 [��; �], one
has j� � j awjj = � � j awj. Thus, one gets

sin (�s �  aw) = sin (�sign ( aw) � j� � j awjj �  aw)

= sin ( aw � sign ( aw)� �  aw) = 0
(A.9)

Using A.9 in V̇ . When �̄ = � with �̄ =  tw + �, one has

5



V̇ � �p5p11

p9
vv2 sin (�r)

2
+ v

p1

p9
a2
tw cos ( tw � ( tw + �))

+ u
p1

p9
a2
tw sin ( tw � ( tw + �))

� �p5p11

p9
vv2 sin (�r)

2 � v p1

p9
a2
tw < 0 (A.10)

V̇ < 0 since v > 0, thus the system is stable if v > 0.

Case v � 0 and � = �̄:

In this case, the following control described in Section 4.3
is chosen (21)-(22). Since sign (�s) = �sign ( aw),

sin (�s �  aw) sin (�s) (A.11)

= sin (�s) sin (sign (�s) j�sj � sign ( aw) j awj)
= sign (�s)

2
sin (j�sj) sin (j�sj+ j awj) (A.12)

= sin (j�sj) sin (j�sj+ j awj) (A.13)

and since j awj � �, deduce j�sj � � � j awj ,
j�sj + j awj � �. Injecting it in (A.12), one get
sin (j�sj+ j awj) sin (j�sj) � 0 so sin (�s �  aw) sin (�s) �
0. Thus, if v � 0, one has

v
p4

p9
aaw sin (�s �  aw) sin (�s) � 0 (A.14)

Using (15) to evaluate �s, it can be shown using interval
analysis than

v
p4

p9
aaw sin (�s �  aw) sin (�s) +

p1

p9
a2
twv cos ( tw � �) � 0

(A.15)

8v 2 ]�1; 0] and for all j�j 2
�
�
18 ;

�
3

�
. Figure A.1 illus-

trates results obtain using interval analysis. Moreover,
one has using (21)

u sin ( tw � �) = u sin ( tw � ( tw � � � �sign (u)))

= u sin (� + �sign (u))

= � juj sin (�) � 0 (A.16)

Finally, p5p11

p9
vv2 sin (�r)

2
= 0 if � = �̄. Injecting it with

(A.15),(A.16) in (A.8), one gets V̇T � 0 if v < 0. The
system is stable and convergent if v < 0.
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