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Abstract 

Despite studying a list of items only minutes earlier, when reencountered in a 

recognition memory test, undergraduate participants often say with total confidence that they 

have not studied some of the items before. Such high confidence miss (HCM) responses have 

been taken as evidence of rapid and complete forgetting and of everyday amnesia (Roediger 

& Tekin, 2020). We investigated 1) if memory for HCMs is completely lost or whether a 

residual memory effect exists, and 2) whether dominant decision models predict the effect. 

Participants studied faces (Experiments 1a, 2, 3) or words (Experiment 1b), then completed a 

single-item recognition memory task, followed by either 1) a two-alternative forced-choice 

recognition task, in which the studied and non-studied alternatives on each trial were matched 

for their previous old/new decision and confidence rating (Experiments 1-2), or 2) a second 

single-item recognition task in which the targets and foils were HCMs and high confidence 

correct rejections (HCCRs), respectively (Experiment 3). In each experiment, participants 

reliably distinguished HCMs from HCCRs. The unequal variance signal detection (UVSD) 

and dual-process signal detection (DPSD) models were fit to the single-item recognition data, 

and the parameter estimates used to predict the memory effect for HCMs. The DPSD model 

predicted the residual memory effect (as did another popular model, the mixture-SDT model). 

However, the UVSD model incorrectly predicted a negative, or no, effect, invalidating this 

model. The residual memory effect for HCMs demonstrates that everyday amnesia is not 

associated with complete memory loss and distinguishes between decision models. 

 

Keywords: Everyday amnesia; forgetting; UVSD model; DPSD model; signal 

detection theory; recognition memory. 
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Public Significance Statement 

Participants in our experiments appeared to completely forget studying particular 

items (pictures of faces or words) over short intervals in tests of recognition memory— 

thereby showing everyday amnesia. However, memory for such items was evident in a 

follow-up memory test. This suggests that the memory loss that occurs in everyday amnesia 

is not complete and also has implications for formal decision models of recognition. 
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Everyday Amnesia: Residual Memory for High Confidence Misses and Implications for 

Decision Models of Recognition 

In tests of recognition memory, participants will often claim with complete 

confidence that they did not study some of the items before, despite studying them only 

minutes earlier. As an example, in Experiment 2 of Tekin and Roediger (2017), 

undergraduate students first studied a list of 50 faces for 2s each. After a 10-minute retention 

interval they were shown the same faces intermixed with 50 new faces and asked to decide 

whether each one was previously studied or not by responding “old” or “new”. Participants 

indicated how confident they were in each decision on a rating scale ranging from “not 

confident at all” to “totally confident”. Although participants tended to correctly judge a 

greater proportion of actual old items to be “old” compared to new items—indicating that 

they had memory for old items—a substantial proportion received “new” decisions (i.e., were 

misses). Strikingly, 19.7% of these misses were made with total confidence. In a reanalysis of 

their study, Roediger and Tekin (2020) drew attention to the relatively high propensity with 

which undergraduate students made such high confidence misses (HCMs), and also reported a 

similar percentage (16%) in a reanalysis of other published studies (Tekin & Roediger, 2017, 

Experiment 1; DeSoto & Roediger, 2014). 

 From one perspective, these findings are relatively surprising: the participants were 

undergraduate students, presumably of sufficient capacity to learn and retain new information 

given their position in higher education, and yet were declaring with total confidence that 

they did not study something they had in fact studied only minutes earlier. Indeed, Roediger 

and Tekin (2020) referred to this as an example of everyday amnesia and took it to mean that 

“rapid and complete forgetting” (Roediger & Tekin, 2020, pp. 6, 8) of fully processed 

experiences can occur in all individuals, not only those with neurological disorders, for 
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example, as a result of damage to the hippocampus/medial temporal lobes (Squire, 1992; 

Squire et al., 2004), as is most commonly associated.  

Signal Detection Theory and HCMs 

An alternative view was proposed by Levi et al. (2022) and Goshen-Gottstein et al. 

(2022) from the perspective of signal detection theory (SDT), a widely used framework for 

conceptualising decision and memory signal components of recognition processes (Green & 

Swets, 1966; Hautus et al., 2022; see Wixted, 2020, for a historical review). In its standard 

form, SDT assumes that each item in a recognition task is associated with a continuous 

memory strength of evidence variable, most commonly assumed to be Gaussian, the mean of 

which is greater for studied items, owing to their presentation in the study phase. In order to 

decide whether a test item was studied or not, participants compare its strength against a 

decision criterion, C. If the strength exceeds the criterion, the item is judged old, otherwise it 

is judged new. To model N confidence ratings, N – 1 decision criteria can be used. For 

example, with six ratings (i.e., where 1 = “sure new”…6 = “sure old”), there are five criteria, 

C1-C5. If the strength of an item exceeds C5, it receives a “6” rating. If it falls between C5 and 

C4, it receives a “5” rating, representing a medium confidence old decision; if it falls between 

C4 and C3 it receives a “4” rating, representing a low confidence old decision; if it falls 

between C3 and C2 it receives a low confidence new “3” rating; if it falls between C2 and C1 it 

receives a medium confidence new “2” rating, and if the strength value falls below C1, it 

receives a sure new “1” rating.  

Levi et al. (2022) and Goshen-Gottstein et al. (2022) advocated a popular version of 

SDT as applied to recognition tasks, the unequal variance signal detection (UVSD) model. In 

this model, the variance of the old item strength distribution can take on a different value 

from that of the new item strength distribution. The UVSD model is motivated by the 

properties of the empirical receiver operating characteristic (ROC), which is a plot of the hit 
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rate against the false alarm rate at different levels of bias (also known as an isosensitivity 

curve). The slope of the z-transformed empirical ROC is typically less than 1, which is 

inconsistent with the expectation of a slope value equal to one if the old and new item 

strength distributions have equal variances. The UVSD model, in contrast, produces a z-ROC 

slope less than one when the variance of the old item strength distribution is greater than that 

of new items (Egan, 1958; see Wixted, 2007, Yonelinas & Parks, 2007, for reviews). Levi et 

al. (2022) and Goshen-Gottstein et al. (2022) pointed out that, in the UVSD model (and SDT 

more generally), a miss is simply an item with a strength value that does not exceed the old-

new decision criterion (i.e., C, or C3), and the miss will be made with the highest level of 

confidence if its strength value falls below the lowest decision criterion C1. Thus, a 

proportion of HCMs are to be expected given the way that the decision process is represented 

in SDT, and in this sense their occurrence is “predicted”, even trivial. Levi et al. (2022) and 

Goshen-Gottstein et al. (2022) also used the UVSD model to reproduce the proportions 

reported in Roediger and Tekin (2020) in two Monte Carlo simulations and fitted the model 

to the data of Tekin and Roediger (2017, Experiment 1) using maximum likelihood 

estimation. 

Roediger and Tekin (2022) and Dobbins (2022) in turn questioned the usefulness of 

the UVSD model as an explanation of HCMs and also its predictive value, pointing out that 

the model can reproduce any proportion of HCMs in an ad hoc manner by varying its 

parameters. To illustrate, we can express the proportion of HCMs that will occur in the 

UVSD model with the following equation: 

 

𝑃𝑃(HCM) =
Φ�𝐶𝐶1 − 𝑑𝑑

𝜎𝜎o
�

Φ�𝐶𝐶3 − 𝑑𝑑
𝜎𝜎o

�
 (1) 
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where Φ is the cumulative distribution function of the standard normal distribution, C1 is the 

criterion value (relative to the mean of the new item distribution, µn, which is fixed to µn = 0 

with no loss of generality), d is the mean difference in strength of old and new items, and σo 

is the standard deviation of the strength distribution of old items relative to that of new items, 

σn (which is fixed to σn = 1 to allow the other parameters to be identified, again with no loss 

of generality). To restate Equation 1 in words, the proportion of HCMs is the proportion of 

old items that fall below the C1 criterion, divided by the proportion of old items judged new. 

The proportion of HCMs therefore depends on the values of C1, C3, d, and σo, and any 

proportion can potentially be reproduced exactly by varying these parameter values. For 

instance, all other parameter values being held constant, the proportion of HCMs 1) increases 

as the criterion C1 takes on higher values (i.e., becomes more conservative), 2) decreases as d 

increases, and 3) interacts with C1 and d as σo increases; for example, when d is relatively 

low and C1 is relatively high, P(HCM) decreases as σo increases, but when d is relatively 

high, P(HCM) increases with σo. For comparison, the proportion of high confidence new 

judgments to new items (i.e., high confidence correct rejections, henceforth HCCRs), is  

 

𝑃𝑃(HCCR) =
Φ(𝐶𝐶1)
Φ(𝐶𝐶3)

 . (2) 

 

Roediger and Tekin (2022), Dobbins (2022), and Roediger and Dobbins (2022), 

additionally questioned the theoretical informativeness of signal detection accounts of 

everyday amnesia, given their abstractness, favouring instead accounts that provide 

explanations in terms of psychological constructs, mechanisms, or neural processes. Roediger 

and Dobbins (2022) maintained that HCMs are worthy of further attention. 

We agree that HCMs are worthy of further attention and, in this article, we investigate 

whether SDT models do in fact make any interesting predictions concerning them. Our 
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overall goal is to shed theoretical light on the important and novel concept of everyday 

amnesia, via two specific aims: First, we sought to establish whether memory for HCMs is 

completely lost, or whether some degree of “residual” memory for HCMs can be 

demonstrated. We did this using additional memory tasks in which participants must 

distinguish HCMs from HCCRs. If a residual memory effect for HCMs can be shown, this 

would inform the phenomenon of everyday amnesia in that it would have implications for the 

completeness of forgetting that can be said to have occurred. Second, we sought to determine 

whether the UVSD model successfully predicts any residual memory effect that can be 

demonstrated for HCMs. 

Our approach was to first fit the model to the single-item recognition memory data 

and then use the parameter estimates to derive ex ante predictions in the additional memory 

tasks. Predictions derived in this way can be considered true “predictions” of the model, as 

opposed to mere fits or reproductions of the data, since the parameters are estimated on the 

basis of the single-item recognition task data, and the data from the subsequent memory task 

can therefore have no bearing whatsoever on these parameter estimates (Busemeyer & Wang, 

2000). A similar approach to testing decision models was recently taken by Ma et al. (2022) 

and Dobbins (2023). We also compared the predictions of the UVSD model to those of 

another dominant model in the literature, the dual-process signal detection (DPSD) model 

(Yonelinas, 1994), which is commonly pitted against the UVSD model (see e.g., Wixted, 

2007; Parks & Yonelinas, 2007; Rotello, 2017, for reviews). Finally, in further modelling, we 

broadened out the range of models by also considering the predictions of the two-high 

threshold (2HT) model (Bröder & Schütz, 2009; Egan, 1958; Moran, 2016; Snodgrass & 

Corwin, 1988), the mixture SDT model (DeCarlo, 2002), and versions of the UVSD model in 

which the distributions are not Gaussian. 

Expected Strength of HCMs vs. HCCRs 
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 The potential for the UVSD and DPSD models to make opposing predictions 

concerning the residual memory effects for HCMs can be identified by considering the 

expected strength values for HCMs and HCCRs in each model. Despite receiving the same 

recognition response, the expected strength value for HCMs can differ from that of HCCRs in 

both models. Interestingly, in the UVSD model, when σo is greater than σn, the expected 

strength of HCMs can be lower than that of HCCRs. This is because the old item strength 

curve intersects the new item curve at two points—the lower and upper tails of the 

distribution—meaning that the likelihoods of the lowest old item strengths are greater than 

those of new items with the same strength values. In other words, the ratio of the densities of 

new and old item strengths at each strength value does not vary monotonically along the 

strength axis. This feature is well-known and has been discussed by others (e.g., Green & 

Swets, 1966; see also DeCarlo, 2002; Dube, 2023; Glanzer et al., 2009; Kellen et al., 2021; 

Stretch & Wixted, 1998; Yonelinas & Parks, 2007). The characteristic is clearly 

counterintuitive from a psychological perspective since it means that, as a result of study, 

some old items will end up with a lower strength than the lowest strength of all new items. 

Despite this, it has not prevented widespread adoption of the model by many in the literature, 

presumably because of the model’s successes in accounting for other aspects of recognition 

data.  

To demonstrate the conditions under which the expected strength of HCMs will be 

lower than that of HCCRs in the UVSD model, we can state the expected strength (S) of a 

HCM as: 

 

𝐸𝐸(𝑆𝑆| HCM) =   𝑑𝑑 −  𝜎𝜎o �
𝜙𝜙 �(𝐶𝐶1 − 𝑑𝑑)

𝜎𝜎o
�

Φ�(𝐶𝐶1 − 𝑑𝑑)
𝜎𝜎o

�
� (3) 
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where 𝜙𝜙 is the normal density function. The expected strength of a HCCR is  

 

𝐸𝐸(𝑆𝑆| HCCR) =  −  �
𝜙𝜙(𝐶𝐶1)
Φ(𝐶𝐶1)�. (4) 

 

The difference in expected strength of HCMs and HCCRs as the σo and d parameters are 

varied in Equations 3 and 4 is shown in Figure 1. It is evident that the expected strength of 

HCMs is more likely to be lower than that of HCCMs as σo increases, d is relatively low, and 

C1 is relatively low (i.e., when the propensity to make high confidence new decisions is 

lower). Interestingly, HCM strength can be lower than HCCR strength even with relatively 

“standard” values of σo and d. For example, in the σo =1.25 panel of Figure 1, where the ratio 

of lure to target variance is 1/1.25 = 0.8 (Ratcliff et al., 1992), the difference in expected 

strength to HCMs and HCCRs is negative or close to zero when d is between 0-1.5 and C1 is 

relatively low.   

A visual representation of the UVSD model when fit to the data from Experiment 1 of 

Tekin and Roediger (2017) is shown in the top left panel of Figure 2 (where the MLE 

estimates are d = 1.08, σo = 1.29, C1 = -1.04, C2 = -0.39, C3 = 0.38, C4 = 0.96, C5 = 1.48). 

With these estimates, the proportion of high confidence new responses to old items in the 

model is lower than that of new items (0.05 vs. 0.15), but, using Equations 3 and 4, the 

expected strength of HCMs is simultaneously lower than that of HCCRs (-1.58 vs. -1.56) 

(Figure 2, lower left panel). That is, despite being studied, a HCM is expected to have a lower 

strength than a HCCR in Experiment 1 of Tekin and Roediger (2017). Although the 

difference is small in this example, it can be greater (or indeed reverse), depending on the 

estimates of d, σo, and C1, as shown in Figure 1.  
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Figure 1  

Expected difference in strength of HCMs and HCCRs in the UVSD model. The solid lines 

indicate d = 0, 0.5, 1, 1.5, 2, and 2.5 (dark to light). The horizontal dashed line indicates zero 

difference. 
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Figure 2 

Visual representation of the UVSD and DPSD models when fit to Experiment 1 of Tekin and 

Roediger (2017) (top row), and the expected strengths of HCMs and HCCRs, given these fits 

(bottom row). 

 

For comparison, consider the dual-process signal detection (DPSD) model 

(Yonelinas, 1994), according to which, recognition decisions are made on the basis of two 

distinct processes, recollection and familiarity. Recollection involves the retrieval of 

qualitative information associated with an item’s previous presentation (e.g., where or when 

it was encountered), whereas familiarity is not associated with the retrieval of such contextual 

information and instead is strength-based, being modelled as an equal variance signal-

detection process. If an old item is recollected, with probability Ro, it receives an “old” 

decision with the highest level of confidence; if it is not recollected, then the decision is 
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based on familiarity. HCMs are therefore described by an equal-variance SDT process, and 

their expected strength is given as:  

 

𝐸𝐸(𝑆𝑆| HCM) =  𝑑𝑑′ −  �
𝜙𝜙(𝐶𝐶1 − 𝑑𝑑′)
Φ(𝐶𝐶1 − 𝑑𝑑′)

� (5) 

 

HCCRs are also described by the same process, and the equation for their expected strength is 

the same as that of the UVSD model (Equation 4). Note that d is used to refer to the mean 

difference in strength of old and new items in the UVSD model while dʹ refers to the 

equivalent difference, in units of σ = σo = σn, in the DPSD model. 

As shown in Figure 3, the expected strength of HCMs is greater than that of HCCRs 

in the DPSD model as dʹ and C1 increases, and the difference is independent of Ro. A visual 

representation of the DPSD model when fit to Experiment 1 of Tekin and Roediger (2017) is 

shown in the top right panel of Figure 2 (where the MLE estimates are dʹ = 0.61, Ro = 0.24, 

C1 = -1.01, C2 = -0.38, C3 = 0.36, C4 = 0.92, C5 = 1.50). Using these estimates, the probability 

of a high confidence new decision to an old item is lower than that of a high confidence new 

decision to a new item (0.04 vs. 0.16) and the expected strength of HCMs is greater than that 

of HCCRs (-1.42 vs. -1.53). Thus, HCMs are more familiar than HCCRs in the DPSD model. 

In sum, the expected strength of a HCM can be lower than that of a HCCR in the 

UVSD model, but not in the DPSD model. Assuming that participants can be sensitive to 

differences in the strength of HCMs and HCCRs, and this translates to the capacity to 

discriminate between such items when presented in an additional memory test, there is a 

strong possibility that the models will make opposing predictions concerning participants’ 

ability to positively discriminate HCMs from HCCRs once their parameters have first been 

fixed by fitting them to the recognition data. This constitutes a test of strong inference (Platt, 

1964). Specifically, given suitable fits to the recognition data, the UVSD model predicts that 
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participants will either be unable to discriminate between HCMs and HCCRs, or even that 

participants will respond as if HCCRs are associated with greater strength than HCMs (i.e., a 

negative residual memory effect for HCMs). In contrast, the DPSD model predicts that 

HCMs and HCCRs can be discriminated, that is, there will be a residual memory effect for 

HCMs.  

 

Figure 3 

Expected difference in strength of HCMs and HCCRs in the DPSD model. The solid lines 

indicate dʹ = 0, 0.5, 1, 1.5, 2, and 2.5 (dark to light). The horizontal dashed line indicates 

zero difference. 

 

 

Measuring residual memory for HCMs 
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To measure residual memory for HCMs, we gave participants one of two additional 

tasks after the standard single-item recognition task: a modified two-alternative forced choice 

(2AFC) task, or a second single-item recognition task in which the targets and foils were 

HCM and HCCR items and participants were instructed to decide whether each item was 

previously studied or not (Lee & Shanks, 2023, recently adopted a similar approach in the 

context of implicit learning). In the modified 2AFC task, studied and nonstudied alternatives 

were presented on each trial that were matched in terms of the previous single-item 

recognition decision and confidence rating they had received, and participants had to decide 

which one was presented in the study phase. The key 2AFC trials are those where a HCM is 

paired with a HCCM. From the participant’s perspective, even though they previously 

indicated with total confidence that both items are new, they still have to select the one they 

think was studied. If participants reliably select the HCM on such trials (i.e., percentage of 

correct decisions is greater than 50%), then this can only be due to the presentation of the 

HCM but not the HCCR in the study phase and would therefore demonstrate that participants 

do in fact have some residual memory for HCMs.  

Re-presenting items from the single-item recognition phase in 2AFC trials is similar 

to the error correction paradigm devised by Starns and colleagues (e.g., Ma et al., 2022; 

Starns et al., 2018), in which, after 12 trials of a recognition task where participants make 

old-new decisions to studied and nonstudied items, error items (i.e., misses or false alarms) 

are re-presented with ones for which responses were correct (correct rejections or hits) in 

two-alternative forced choice trials, and participants are required to select which of the 

alternatives they think was from the study list. In doing so, they are thereby given an 

opportunity to correct their previous errors. The 2AFC trials in this task are presented after 

every 12 trials to reduce the likelihood that items will be in a different state in the repeated 

test, due for example to forgetting. Given that our intention was to use similar procedures to 
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Tekin and Roediger (2017) to investigate HCMs, we presented the 2AFC trials after all the 

trials of the single-item recognition task, rather than after a subset of trials. Our 2AFC task – 

devised independently from the error correction paradigm – also differs from it in that the 

alternatives are matched according to the decision and confidence rating, whereas in the error 

correction paradigm, studied and non-studied items are matched only by the old/new 

decision. Instead of using confidence ratings, Ma et al. (2022) identified and tested competing 

predictions of the UVSD and 2HT models through manipulations of the response criterion 

and biased the tendency for participants to respond old or new using payoff manipulations.  

 Ma et al. (2022) provided equations to determine the probability with which an old 

item will be selected on a 2AFC trial consisting of a studied and non-studied item, where 

both items were judged as old or new. We adapted these functions for trials where the 

alternatives are matched according to confidence ratings. The probability that a studied item 

will be correctly selected from a forced-choice pair, J- J, comprising a studied and non-

studied item that both received the same rating J in the preceding single-item recognition task 

(e.g., 1-1, when J = 1, where 1 = high confidence new), is given as: 

 

𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐| 𝐽𝐽 − 𝐽𝐽) =  �
ϕ(𝑓𝑓,𝑑𝑑,σo)

Φ(𝐶𝐶𝑗𝑗, 𝑑𝑑,σo) −Φ(𝐶𝐶𝑗𝑗−1,𝑑𝑑,σo)

𝐶𝐶𝑗𝑗

𝐶𝐶𝑗𝑗−1

Φ(𝑓𝑓) −Φ�𝐶𝐶𝑗𝑗−1�
Φ(𝐶𝐶𝑗𝑗) −Φ(𝐶𝐶𝑗𝑗−1)

 𝑑𝑑𝑑𝑑 (6) 

 

where j = J = 1,…,6, C0 = -∞, C1-C5 are the decision criteria, and C6 = ∞; f is the strength 

value. In Figure 4, Equation 6 is used to plot accuracy as a function of the UVSD model 

parameters, and shows that, all else being equal in the UVSD model, accuracy on 1-1 trials 

(i.e., those where the alternatives are a HCM and HCCR) tends to increase as d and C1 

increase but decreases as σo increases. Accuracy can be at or below chance (50% correct) 

when σo is relatively high and d is relatively low. With fairly typical parameter values (i.e., d 
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~ 1, σo ~ 1.25), accuracy is around 50% correct for items falling below a C1 of approximately 

-1.5. Thus, predicted accuracy follows approximately the same pattern as the expected 

differences in HCM and HCCR strength (Figure 1). The values in Figure 4 additionally serve 

to demonstrate that the strength differences in Figure 1 can translate to non-trivial 

quantitative differences in predicted accuracy. 

In the DPSD model, accuracy on 1-1, 2-2, 3-3, 4-4, and 5-5 2AFC trials (i.e., when J 

= 1-5) is determined by the formula:  

 

𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐| 𝐽𝐽 − 𝐽𝐽) =  �
ϕ(𝑓𝑓, 𝑑𝑑′, 1)

Φ(𝐶𝐶𝑗𝑗,𝑑𝑑′, 1) −Φ(𝐶𝐶𝑗𝑗−1,𝑑𝑑′, 1)

𝐶𝐶𝑗𝑗

𝐶𝐶𝑗𝑗−1

Φ(𝑓𝑓) −Φ�𝐶𝐶𝑗𝑗−1�
Φ(𝐶𝐶𝑗𝑗) −Φ(𝐶𝐶𝑗𝑗−1)

 𝑑𝑑𝑑𝑑 (7) 

 

In the 6-6 forced-choice condition, because of the influence of recollection, an old 

item is either recollected with probability Ro, in which case it is correctly selected as the 

studied item, or else the decision is based on familiarity as in Equation 7. Thus, accuracy on 

6-6 trials is given by: 

𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐, 6 − 6) =  𝑅𝑅o + (1 − 𝑅𝑅o)�
ϕ(𝑓𝑓, 𝑑𝑑′, 1)

1 −Φ(𝐶𝐶5,𝑑𝑑′, 1)

Inf

𝐶𝐶5

Φ(𝑓𝑓)−Φ(𝐶𝐶5)
1 −Φ(𝐶𝐶5)

 𝑑𝑑𝑑𝑑 (8) 

 

Accuracy of 1-1 trials across parameters in the DPSD model is shown in Figure 5. As was the 

case with the expected difference in strength to HCMs and HCCRs (Figure 3), accuracy tends 

to increase as d′ and C1 increases and is greater than chance when d′ is greater than zero. 

Accuracy for these trials is unaffected by Ro, since recollection only occurs for the highest 

confidence old ratings, and 1-1 trials are based on familiarity.  

Next, we describe four experiments designed to determine whether a residual memory 

effect can be demonstrated for HCMs before considering how well the UVSD and DPSD 

models predict the effect once fit to the single-item recognition data. To foreshadow our 
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behavioural findings, we found evidence of residual memory for HCMs using the 

aforementioned 2AFC task (in Experiments 1a, 1b, and 2), and also when a second single-

item recognition task was given in which the targets and foils are HCMs and HCCRs, 

respectively (in Experiment 3).  

 

Figure 4 

Predicted accuracy on 1-1 2AFC trials (percentage of trials on which the HCM strength 

exceeds that of HCCRs) in the UVSD model. The solid lines indicate d = 0, 0.5, 1, 1.5, 2 and 

2.5 (dark to light). The horizontal dashed line indicates 50%.  

 

 
  



19 
 

Figure 5 

Predicted accuracy on 1-1 2AFC trials (percentage of trials on which the HCM strength 

exceeds that of HCCRs) in the DPSD model. The solid line indicates dʹ = 0, 0.5, 1, 1.5, 2 and 

2.5 (dark to light). Horizontal dashed line indicates 50% correct. 

 

 

Experiment 1a 

Experiment 1a was based on Experiment 2 of Tekin and Roediger (2017), which was 

the first dataset that Roediger and Tekin (2020) referred to when describing the phenomenon 

of everyday amnesia. There were the following key differences to enable the 2AFC task to be 

added after the single-item recognition task. First, in Tekin and Roediger’s (2017) 

experiment, after each “old” / “new” decision, participants indicated their confidence on 

either on a 4-, 5-, 20- or 100-point scale, whereas we only used a 4-point scale. We did this to 

ensure that the number of trials that could be presented in the 2AFC task was as high as 
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possible, since the number of studied and non-studied items that receive the same rating 

becomes less likely as the number of ratings increases. Another difference was that we had 

only one study-test phase cycle, rather than two, in order to reduce the likelihood of potential 

carry-over effects between 2AFC tasks. Given that we wanted to have the same number of 

studied faces (100) as Tekin and Roediger, and also that presenting them in a single study 

phase would effectively increase the study list length, relative to their experiment, we 

attempted to offset the poorer memory that would be expected from the longer list length by 

showing faces for a longer duration (4s rather than 2s as in Tekin & Roediger, 2017). The 

additional 2AFC task was presented on completion of the single-item recognition task. For 

completeness, in addition to the key 1-1 trials, we also included trials on which the items 

were matched for all possible combinations of old-new decision and confidence rating. The 

stages of the experiment are shown in Figure 6. 

Method 

Participants 

We aimed to have an appropriate number of participants to match the statistics 

reported in Table 1 of Roediger and Tekin (2020) (i.e., 7200 study items / 100 study items per 

participant = 72 participants). Seventy-two participants were recruited but one was excluded 

from the analysis because their performance in the single-item recognition task was at floor 

(their hit-minus-false alarm rate was equal to 0.02), and so an additional participant was 

recruited to replace them. The 72 participants (60 female, 11 male, one non-binary/other) had 

a mean age of 19.56 years (SD = 1.73). All individuals in this and subsequent experiments 

were psychology students from the University of Plymouth, who participated in partial 

fulfilment of a course requirement, and were recruited through the University’s online 

participant pool. Ethical approval for all experiments was obtained via the School of 

Psychology Ethics Committee, Faculty of Health, University of Plymouth. 
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Figure 6  

(a) Experiment 1a task and (b) Experiment 3 task. Photos of faces are from the Minear and 

Park (2004) research database. 

 

 

Materials 

As in Tekin and Roediger (2017), the stimuli were 200 neutral faces of individuals 

between 19-50 years of age, taken from the Minear and Park (2004) database; 160 of the 

faces were white (80 male, 80 female), and 40 were black (20 male, 20 female). The faces 

were divided into two lists, matched in terms of the proportion of black/white x male/female 
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faces. One of the lists was randomly assigned to act as the studied stimuli for each 

participant, with the other list acting as the non-studied stimuli. The experiment was written 

in OpenSesame (Mathot et al., 2012) and the OSWeb functionality of the program was used 

to run it on a web browser on a desktop PC for each participant, via hosting on a JATOS 

server (Lange et al., 2015).  

Procedure 

Participants were tested individually in a quiet laboratory room. After reading a brief 

introduction and giving consent, participants read the instructions for the study phase, which 

told them that they would see faces presented one at a time, each for a few seconds, and that 

they should try to memorise each one for an upcoming but unspecified memory test.  

On each trial of the study phase, a face was presented for 4 seconds, followed by a 

central fixation point for 500 ms. After the study phase, there was a 10-minute retention 

interval during which participants engaged in an unrelated task (word searches of countries of 

the world or counties in the UK). Next, the instructions for the single-item recognition 

memory test phase were presented. Participants were told that they would see a previously 

studied or non-studied face on each trial, and for each one they must decide whether it was 

presented in the first stage or not by responding “old” (if they thought it was studied) or 

“new” (if they thought it was not), after which they must indicate how confident they are in 

their decision on a 4-point scale, where 1 corresponds to “not at all confident” and 4 

corresponds to “totally confident”. 

The single-item recognition phase consisted of 200 trials, comprising 100 old and 100 

new faces in a random order. On each trial, a face was shown in the centre of the screen, with 

the cue “Was this shown in the first phase? Z = New / M = Old” shown below it. All 

responses were self-paced, and once participants had pressed Z or M, the cue was replaced 

with the text “How confident are you in your decision?”, with the numbers 1-4 shown below 
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this, and the text “Not at all confident” below the number 1, and “Totally confident” shown 

below the number 4. After participants made their confidence rating, there was a 200 ms 

blank interval before the next trial was presented.  

On completion of the single-item recognition memory phase, instructions for the 

2AFC phase were presented. Participants were told that they would see a pair of faces side-

by-side on each trial, and that one was presented in both the first stage (the study phase) and 

also the previous phase (the recognition task), whereas the other was not presented in the first 

phase and was only shown in the phase just completed. Their task was to select the face from 

the pair that they thought had been presented in the first phase. After making their selection 

they were to once again indicate how confident they were in their decision on a 4-point scale. 

On each 2AFC trial, a pair of faces was presented, side-by-side. Each pair consisted of one 

studied face and one non-studied face. Below the two faces, the question “Which one was 

presented in the first phase? Left / Right” was presented with the keypress response prompt 

“D = Left, J = Right” beneath. Crucially, the faces on each trial had been given identical 

ratings in the single-item recognition stage. An algorithm was built into the experimental 

program whereby, before the 2AFC phase commenced, studied and non-studied items that 

had received the same old/new decision and rating were randomly paired, for as many 

pairings as the responses made would allow. Following Roediger and Tekin (2020), 

responses at the lowest two confidence ratings (1 and 2) were binned. There were therefore 

six possible types of 2AFC trial, arising from 2 decisions (old, new) x 3 ratings (1 or 2, 3, 4), 

henceforth referred to as 1-1, 2-2, 3-3, 4-4, 5-5, and 6-6 trial types, where the number denotes 

the rating of the studied and non-studied alternatives on each 2AFC trial and the responses 

have been remapped to a 1-6 scale, with end points 1 = “totally confident new” and 6 = 

“totally confident old”. Thus, the items on 1-1 trials had both received a “new” decision and a 

“4 - totally confident” rating, those on 2-2 trials received a “new” decision and a medium 
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confidence “3” rating, those on 3-3 trials received a “new” decision and a “1 – not at all 

confident” or “2” rating, those on 4-4 trials received an “old” decision and a “1 – not at all 

confident” or “2” rating, those on 5-5 trials received an “old” decision and a “3” rating, and 

those on 6-6 trials received an “old” decision and a “4 – totally confident” rating. Hence the 

total number of 2AFC trials was variable across participants. 2AFC trials were randomly 

ordered for a given participant. Similarly, the left-right position of the studied item was 

randomly determined on each trial. Trials were self-paced. On completion of the final phase, 

participants were debriefed. The entire experiment took approximately 45 minutes, depending 

on the pace of the participant. 

Transparency and Openness 

An alpha level of .05 was used for all statistical tests. Data were analysed in R (R 

Core Team, 2023) and Bayes factors were obtained using the BayesFactor package (Morey & 

Rouder, 2022) using the default priors. The experiment was not preregistered (only 

Experiment 2 was preregistered, see https://osf.io/2q5yw/). The data, analysis scripts, and 

materials are available on the Open Science Framework at the repository for this article 

(https://osf.io/2q5yw/). 

Results 

 In the single-item recognition task, the proportion of old items judged old (hits) was 

reliably greater than that of new items judged old (false alarms), indicating that participants 

could discriminate old from new items (Table 1), t(71) = 18.06, p < .001, BF10 = 1.11 x 1025, 

Cohen’s d = 2.13. The measure of discriminability (d′ = 0.98) was comparable to that of 

Tekin and Roediger (2017, Experiment 2), who found that d′ ranged from 0.89-1.17. 

 The proportion of low (1-2), medium (3) and high (4) confidence ratings made to hits, 

misses, false alarms, and correct rejections is shown in Table 2. 18.40% of misses received 

https://osf.io/2q5yw/
https://osf.io/2q5yw/
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high confidence ratings, which is comparable to that reported by Roediger and Tekin (2020) 

(19.74%). 

Table 1  

Single-item recognition phase hit rate, false alarm rate, and discriminability scores in 

Experiments 1a, 1b, 2, and 3. 

Exp. Study instruction Hits False alarms d' 
  M SD M SD M SD 
1a Memorise items 0.57 0.14 0.23 0.10 0.98 0.53 
1b Memorise items 0.63 0.13 0.29 0.12 0.97 0.63 
2 Decide age 0.67 0.13 0.16 0.09 1.53 0.55 
3 Decide age 0.67 0.12 0.20 0.09 1.34 0.47 

 
 

Table 2 

Number of observations and percentages of hits, misses, false alarms, and correct rejections 

in the single-item recognition task for Experiments 1a, 1b, 2, and 3. Percentages are within a 

response type (e.g., hit, miss) 
 1-2 3 4 Total 
 n % n % n % n 

Experiment 1a 
Hit 872 21.32 986 24.10 2233 54.58 4091 
Miss 1482 47.67 1055 33.93 572 18.40 3109 
FA 781 47.25 551 33.33 321 19.42 1653 
CR 2282 41.14 1871 33.73 1394 25.13 5547 

Experiment 1b 
Hit 1019 22.31 1073 23.49 2476 54.20 4568 
Miss 1564 59.42 817 31.04 251 9.54 2632 
FA 1060 50.33 621 29.49 425 20.18 2106 
CR 2518 49.43 1810 35.53 766 15.04 5094 

Experiment 2 
Hit 931 19.31 1175 24.37 2716 56.33 4822 
Miss 1147 48.23 802 33.73 429 18.04 2378 
FA 625 54.44 345 30.05 178 15.51 1148 
CR 2041 33.72 2309 38.15 1702 28.12 6052 

Experiment 3 
Hit 1068 22.08 1307 27.02 2462 50.90 4837 
Miss 1275 53.96 736 31.15 352 14.90 2363 
FA 787 53.39 403 27.34 284 19.27 1474 
CR 2445 42.70 2022 35.31 1259 21.99 5726 
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Having established a similar level of recognition discriminability and propensity for 

participants to make HCMs as Tekin and Roediger (2017, Experiment 2), we turned to 

performance in the 2AFC task. The mean number of trials in each 2AFC condition is shown 

in Table 3. Given that the number of trials in each condition differed across participants, and 

that some participants, due to their individual responses, had zero trials in a given 2AFC 

condition, we analysed the data from this phase using generalised linear mixed models, using 

the glmer() function in the lme4 package in R (Bates et al., 2015). The outcome variable was 

whether the decision on the 2AFC trial was correct or not, the fixed effect was the type of 

forced choice trial (i.e., 1-1, 2-2, 3-3, 4-4, 5-5, 6-6), and the random effect grouping factor 

was the participant. Item was not included as a random effect, since the items on each 2AFC 

trial were uniquely determined for each participant according to their previous responses. The 

model with binomial family and logit link function was fit using maximum likelihood 

estimation. Goodness of fit was assessed with AIC. To allow model convergence, the model 

contained random intercepts but not random slopes associated with the fixed factor. 

Overdispersion in the residuals was evaluated using the DHARMa package (Hartig, 2022) 

and was not detected.  

 

Table 3 

Mean number trials in each FC condition 

Forced-choice 
condition 1-1 2-2 3-3 4-4 5-5 6-6 
 M SD M SD M SD M SD M SD M SD 
Exp. 1a 9.88 9.39 14.44 10.96 20.11 12.98 9.72 6.31 7.68 6.28 6.29 7.20 
Exp. 1b 4.76 4.44 11.23 6.78 21.62 12.51 12.56 6.71 8.29 5.03 6.54 6.95 
Exp. 2 7.64 10.05 11.76 9.07 16.26 11.87 8.28 5.60 4.95 5.15 3.56 3.83 

 

Accuracy differed reliably across 2AFC conditions, χ2(5) = 33.10, p < .001. The 

estimated marginal mean and 95% confidence interval for each condition are shown in Figure 

7. Tests of each mean against 0.5 (i.e., proportion correct performance expected due to 
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chance) were performed, with p-values adjusted using the Holm method for six tests. Of key 

interest, accuracy in the 1-1 condition significantly exceeded chance (M = 0.57, SE = 0.02, 

95% CI [0.51, 0.63], z = 3.074, p = .0042), suggesting that participants had some residual 

memory for HCMs. Accuracy did not exceed the level expected due to chance in the 2-2 

condition (M = 0.52, SE = 0.02, 95% CI [0.48, 0.57], z = 1.26, p = 0.21), but did in the other 

conditions (Ms > 0.54, zs > 3.33, ps < .0027). 

The confidence rating made after each 2AFC decision (1 = not at all confident…4 = 

total confidence) was also analysed using linear mixed models with condition (1-1…6-6) and 

decision (correct vs. incorrect) as fixed factors and participant as a random factor. Model 

terms were tested with the Satterthwaite method. Both the effects of rating and decision were 

statistically significant: F(5, 4536.3) = 30.34, p < .001, and F(1, 4501.3) = 50.12, p < .001, 

respectively. Moreover, a condition x decision interaction was found, F(5, 4498.2) = 5.25, p 

< .001, indicating that confidence generally increased across conditions 1-1 to 6-6 and tended 

to be greater for correct decisions than incorrect ones, but with the difference in the 2-2 and 

3-3 conditions tending to be smaller than the others (Figure 8). Thus, the differences in 

confidence ratings to correct and incorrect decisions generally followed the same pattern as 

the accuracy data.  

Discussion 

In Experiment 1a, participants tended to select a HCM as the previously studied item 

rather than a HCCR in the 2AFC task. The finding that accuracy exceeded 50% in the 1-1 

condition demonstrates that HCMs were encoded to some degree, and that some residual 

memory exists for these items. Interestingly, accuracy on 2-2 trials did not exceed 50%, 

indicating an absence of memory for misses made with medium confidence. On the surface, 

this result could be taken to reflect everyday amnesia, yet Roediger and Tekin (2020) did not 

make any claims with regard to these items, and there is no justification a priori for why 
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memory should be absent for these responses but not HCMs. Furthermore, to foreshadow the 

findings of our other experiments, the absence of memory for misses made with a medium 

level of confidence is not a robust finding. Finally, although not the focus of our 

investigation, an interesting aspect of our results is that accuracy was significantly greater 

than 50% correct on 6-6 trials, which shows that highly confident “false memories” (high-

confidence false alarms) could be distinguished from true ones (high confidence hits). 

 

Figure 7 

2AFC task accuracy according to 2AFC condition (1-1, 2-2, 3-3, 4-4, 5-5, 6-6). In the left 

column, the estimated marginal means (controlling for participant; transformed to 

percentages) are plotted as dark circles, and the error bars represent the 95% confidence 

intervals of these estimated means from the model; light circles denote data from individual 

participants. Predicted accuracies according to the UVSD and DPSD models are shown in 

the middle and right columns, where each dark circle represents the mean expected accuracy 

across participants and the light circles denote the expected value for each participant.  
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Figure 8 

Confidence ratings to correct and incorrect decisions in each 2AFC condition in Experiments 

1a, 1b, and 2 

 

 

Experiment 1b 
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The aim of Experiment 1b was to determine if the residual memory effect for HCMs 

would also be demonstrated with word stimuli. The experiment was therefore similar in 

design to Tekin and Roediger (2017, Experiment 1) except for the following key differences: 

As in our Experiment 1a, there was a single study-test phase cycle, rather than the two cycles 

used by Tekin and Roediger. Once again, the reason for this was to avoid potential carry-over 

effects from the inclusion of the additional 2AFC task. We also used half the total number of 

study items as Tekin and Roediger (2017, Exp. 1) (i.e., 100 words in a single study phase) to 

facilitate comparison with Experiment 1a. Given that overall levels of memory performance 

were lower in Tekin and Roediger’s Experiment 1 (with words) compared to their 

Experiment 2 (with faces), we attempted to counteract the anticipated lower levels of memory 

by doubling the study exposure duration of each word (from 2s to 4s). Thus, Experiment 1b 

was in fact identical to our Experiment 1a, except that the stimuli were words. 

Method 

Participants 

We recruited 72 participants for parity with Experiment 1a. One participant performed 

at floor in the single-item recognition task (their false alarm rate was greater than their hit 

rate) and was replaced. The 72 participants (69 female, nine male, one non-binary/other) had 

a mean age of 19.62 years (SD = 2.15). 

Materials and Procedure 

Words were selected from Nelson et al. (2004) with similar constraints to Tekin and 

Roediger (2017, Exp 1). One hundred words comprised one list, and a further 100 

corresponding associates comprised another. Each associate was one of the top three words 

associated to the other word according to Nelson et al. (2004). For example, if ‘table’ was on 

the first list, the associate ‘chair’ would be on the other list. All words had concreteness 

scores between 3.5 and 7 and log HAL frequencies (Balota et al., 2007) of between 5.99 and 
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13.55. Words were between 5-6 letters in length and each list had the same number of 5- and 

6-letter words (66 and 34, respectively). There were no duplicates of words across lists. As in 

Experiment 1a, one of the lists was randomly assigned to act as the studied stimuli for each 

participant, with the other list acting as the non-studied stimuli. The procedure used in 

Experiment 1b was identical to that of Experiment 1a except that the stimuli were words 

instead of faces. 

Results and Discussion 

 Participants could reliably discriminate old from new items (Table 1), t(71) = 16.11, p 

< .001, BF10 = 1.82 x 1022, Cohen’s d = 1.90. Mean dʹ was virtually identical to Experiment 

1a (d′ = 0.97, Table 1). Interestingly though, the percentage of misses made with high 

confidence (9.54%) was approximately half the level found in Experiment 1a (18.40%, Table 

2) and in Roediger and Tekin (2020). 

The mean number of 2AFC trials in each condition is shown in Table 3. As in 

Experiment 1a, we analysed the data from this phase in the same manner using generalised 

linear mixed models, and derived expected marginal mean accuracy with tests of each mean 

against expected chance levels of performance that were adjusted for multiple comparisons 

using a Holm correction. Accuracy significantly differed across conditions, χ2(5) = 51.63, p < 

.001. As shown in Figure 7, accuracy in the 1-1 condition exceeded chance performance (M = 

0.60, SE = 0.03, 95% CI [0.52, 0.68], z = 3.09, p = .008), suggesting once again that 

participants had some residual memory for HCMs. As in Experiment 1a, accuracy did not 

exceed the level expected due to chance in the 2-2 condition (M = 0.52, SE = 0.02, 95% CI 

[0.47, 0.57], z = 1.08, p = .56). Unlike Experiment 1a, accuracy in the 4-4 condition did not 

exceed the level expected due to chance (M = 0.50, SE = 0.02, 95% CI [0.45, 0.55], z = -0.04, 

p = 0.97), but accuracy in the 3-3, 5-5- and 6-6 conditions did (Ms > 0.54, zs > 2.91, ps < 

.011). 
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As in Experiment 1a, the confidence rating made after each 2AFC decision (1 = not at 

all confident…4 = total confidence) was analysed using linear mixed models with the 

condition (1-1 to 6-6) and decision (correct vs. incorrect) as fixed factors and participant as a 

random factor. Model terms were tested with the Satterthwaite method. Both the effects of 

rating and decision were statistically significant, F(5, 4449.7) = 64.56, p < .001, and F(1, 

4416.1) = 40.54, p < .001, respectively. A marginal condition x decision interaction was also 

found, F(5, 4409.1) = 2.14, p = .06, indicating that confidence generally increased from 

conditions 1-1 to 6-6 and tended to be greater for correct decisions than incorrect ones, except 

in conditions 2-2 and 3-3 where the difference tended to be smaller (Figure 8). Thus, like 

Experiment 1a, confidence and accuracy were generally related in the 2AFC task.  

Once again, accuracy in the 1-1 condition exceeded the level of performance expected 

due to chance, demonstrating a residual memory effect for HCMs, this time with word 

stimuli. Interestingly, the effect was shown even though the percentage of HCMs made was 

roughly half that of Experiment 1a. 

Experiment 2 

In Experiment 2, we aimed to replicate the residual memory effect for HCMs, but 

under more demanding encoding conditions where a given study item was more likely to 

have been processed. Although participants were instructed to memorise the set of study 

images/words in Experiments 1a and 1b, it is possible that not all items were attended to, and 

so these items may be functionally equivalent to new items at the time of the test phase, 

which could have given rise to HCM responses. This alternative explanation for HCMs was 

considered by Roediger and Tekin (2020), and if it occurred, may have diluted the residual 

memory effect we found for HCMs. Thus, to help ensure that participants processed each 

item during the study phase, they were required to make a decision to each one, rather than 

simply memorise the study list. To achieve this, the design was identical to Experiment 1a, 
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except that in the study phase, participants decided whether they thought each face was of a 

person older or younger than 25 years of age. We chose 25 years for the decision, since 

approximately half of the faces in each counterbalance condition were older than 25 and 

approximately half were younger. We based this experiment on Experiment 1a rather than 

Experiment 1b, since the proportion of HCMs was higher, and more comparable to the level 

reported by Roediger and Tekin (2020). Experiment 2 was preregistered (at 

https://osf.io/2q5yw/). 

Method 

Participants  

Seventy-two participants were recruited from the same participant pool database as 

Experiment 1a but had not taken part in that experiment. One participant was replaced due to 

their performance in the single-item recognition task being at floor (their hit minus false 

alarm rate was less than the 0.05 criterion we preregistered, and was equal to zero). 

Participants received either course credit or £7.50 in exchange for their participation. Fifty-

six participants identified as male, 14 as female, one as non-binary/other, and one did not 

provide this information. Their mean age was 20.15 years (SD = 2.69). 

Design and Procedure 

The design and procedure were identical to Experiment 1a, except that after each face 

was shown in the study phase, participants had to decide whether the face was of a person 

who was older or younger than 25 years of age. The study instructions informed participants 

that they would see faces presented one at a time, each for a few seconds, and that they would 

have to decide whether the person looked older or younger than 25 by pressing one of two 

keys. The decision would sometimes be difficult to make but they should try their best to do 

so within 2 seconds after they are presented. On each trial of the study phase, a central 

fixation point was presented for 500 ms, then a face was presented for 4 seconds. After the 

https://osf.io/2q5yw/
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face disappeared the question “Did the face look older or younger than 25 years?” was 

presented and the keypress prompts “Q = older” and “P = younger” appeared below the 

question. Participants had up to 2 seconds to make their keypress before the program 

automatically advanced to the next trial (if no keypress was made). If a keypress was made in 

under two seconds, the program advanced to the next trial. 

Results 

In the study phase, the mean proportion of items receiving an “older” or “younger” 

judgment within the trial duration was 0.98 (SD = 0.11). There were no participants who 

made no responses, and no participants exclusively responded “older” or “younger”. 

In the single-item recognition task, the hit rate was reliably greater than the false 

alarm rate (Table 1), indicating that participants could successfully discriminate old from new 

items, t(71) = 26.53, p < .001, BF10 = 1.53 x 1035, Cohen’s d = 3.13. Mean d′ (1.53) was 

numerically greater than those of Experiments 1a and 1b and Tekin and Roediger (2017, 

Experiment 2) (where d′ ranged from 0.89-1.17), in line with the deeper encoding task 

performed by participants. 

 The proportions of low (1-2), medium (3) and high (4) confidence ratings made to 

hits, misses, false alarms, and correct rejections are shown in Table 2. 18.04% of misses 

received high confidence ratings, which is comparable to the level in Experiment 1a and 

Roediger and Tekin (2020). This percentage remained similar (18.20%) even when old items 

for which no key press decision was made during the study phase were excluded. This 

bolsters our confidence that HCMs were extensively attended and processed during the study 

phase. 

We turn next to the central issue of whether residual memory could be detected for 

HCMs in the 2AFC task. The mean numbers of 2AFC trials in each condition are shown in 

Table 3. As in Experiments 1a and 1b, we analysed the data from this phase in the same 
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manner, using generalised linear mixed models and conducted tests of accuracy versus levels 

expected due to chance with p-values adjusted for multiple comparisons using the Holm 

correction. Accuracy significantly differed across conditions, χ2(5) = 19.41, p < .001. As 

shown in Figure 7, accuracy in the 1-1 condition exceeded the level expected due to chance 

(0.5) (M = 0.64, SE = 0.024, 95% CI [0.57, 0.70], z = 5.56, p < .0001). Once again, this 

suggests that some residual memory for HCMs could be detected in this task. Accuracy also 

exceeded the level expected due to chance in the other 2AFC conditions (Ms > 0.61, SEs < 

0.035, 95% CIs [> 0.57, < 0.80], zs > 5.47, ps < .0001). 

As in the previous experiments, confidence ratings made after each 2AFC decision (1 

= not at all confident…4 = total confidence) were analysed using linear mixed models with 

condition (1-1…6-6) and decision (correct vs. incorrect) as fixed factors and participant as a 

random factor. This analysis was exploratory and was not pre-registered. Model terms were 

tested with the Satterthwaite method. Both the effects of rating and decision were statistically 

significant, F(5, 3386.3) = 10.62, p < .001, and F(1, 3353.9) = 72.89, p < .001, respectively. 

A condition x decision interaction was also found, F(5, 3354.5) = 3.34, p = .005, indicating 

that confidence generally increased across conditions 1-1 to 6-6 and tended to be greater for 

correct decisions than incorrect ones, with a smaller difference apparent in the 2-2, 3-3, and 

4-4 conditions (Figure 8). Thus, confidence tended to follow accuracy in the 2AFC task.  

Discussion 

Once again, a residual memory effect for HCMs was demonstrated in Experiment 2, 

this time following a deeper encoding task, where we can have greater confidence that HCMs 

were attended to and processed during encoding. For almost every HCM, the participant had 

processed the face stimulus sufficiently in the study phase to make a decision about the 

person’s age. Indeed, in line with there being deeper processing, performance in both 
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recognition tasks was numerically greater than in Experiments 1a and 1b, and accuracy in all 

2AFC conditions was greater than chance.  

Experiment 3 

In Experiment 3, we sought to determine whether the residual memory effect for 

HCMs would be also found when the 2AFC task was replaced with a second single-item 

recognition task in which the targets and foils were HCMs and HCCRs, respectively. If so, 

this would suggest that the conditions necessary to demonstrate the residual memory effect 

for HCMs are not restricted to those imposed by a 2AFC task, for example, the requirement 

to make a relative assessment of the strength of two items. Experiment 3 was identical to 

Experiment 2 except that, after the first single-item recognition task, participants completed a 

second single-item recognition task comprising solely previous HCMs and HCCRs (see 

Figure 6b). Participants were told that half of the items in this phase were in fact from the 

study phase, and that they must decide for each item whether it was presented in this phase or 

not. The design was otherwise equivalent to Experiment 2.  

Method 

Participants 

As in the previous experiments, we recruited 72 participants on the basis of acquiring 

a set of data of roughly the same size (i.e., 7200 study items) as Roediger and Tekin (2020). 

None had taken part in the other experiments with face stimuli (Experiments 1a or 2). 

Demographic data for 5 participants were lost due to technical failure. The remaining 67 

individuals (51 female, 15 male, 1 non-binary/other) had a mean age of 19.51 years (SD = 

1.85). 

Materials and Procedure 

The materials and procedure of Experiment 3 were identical to those of Experiment 2 

except that the 2AFC task was replaced with a second single-item recognition task. The 
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instructions for this phase told participants that they would see a mixture of faces that they 

had just seen, each presented one at a time. For each face, they were to decide whether they 

thought it was one that was presented in the first phase or not, indicating their decision using 

a 6-point rating scale, where 1 = high confidence no, 2 = medium confidence no, 3 = low 

confidence no, 4 = low confidence yes, 5 = medium confidence yes, and 6 = high confidence 

yes. This one-step rating scale was used, rather than the two-step procedure used in 

Experiment 1a, in order to help distinguish the two single-item recognition phases, and also 

to help reduce the likelihood that participants would attempt to simply reproduce their 

response from the first test phase. That is, we wanted to avoid a situation where, for a 

particular face, a participant could adopt a strategy whereby they remembered that they 

responded “new” followed by “4” to it, and then attempt to reproduce these exact same 

responses in order to be consistent with their previous responding. In addition, participants 

were told that half of the faces they would see were in fact from the first phase and half were 

not. We reasoned that by giving participants this information, they may be less likely to adopt 

a strategy in which they attempt to be consistent in their responses across phases. 

An algorithm was built into the experimental program that ensured that the number of 

HCMs and HCCRs presented in the second single-item recognition phase was the same. If 

the number of HCCRs was greater than that of HCMs, a random sample of HCCRs was 

selected, with N equal to the number of HCMs, and vice versa if the number of HCMs was 

greater than the number of HCCRs. The order of presentation of HCMs and HCCRs was 

randomised for each participant. In the event that a participant made no HCMs or HCCRs in 

the first single-item recognition phase, no items could be presented in the second single-item 

recognition phase, so the experiment ended, and the participant was debriefed.  

Results 
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In the study phase, the mean proportion of items receiving an “older” or “younger” 

judgment within the trial duration was 0.94 (SD = 0.19). There were no participants who 

made no responses or who exclusively responded “older” or “younger”.  

As in the previous experiments, the hit rate was reliably greater than the false alarm 

rate, indicating that participants could successfully discriminate old from new items (Table 

1), t(71) = 27.45, p < .001, BF10 = 1.33 x 1036, Cohen’s d = 3.23. Mean d′ (1.34) was 

numerically greater than those of Experiments 1a and 1b and Tekin and Roediger (2017, 

Experiment 2) (where d′ ranged from 0.89-1.17), in line with the deeper encoding task 

performed by participants.  

 The proportion of low (1-2), medium (3) and high (4) confidence ratings made to hits, 

misses, false alarms and correct rejections is shown in Table 2. 14.90% of misses received 

high confidence ratings, which is slightly lower than that found in Experiment 1a and 

reported by Roediger and Tekin (2020). As in Experiment 2, this value remained similar even 

when old items for which no key press decision was made during the study phase were 

excluded (13.87%). 

We turn next to the question of whether any residual memory could be detected for 

HCMs in the second single-item recognition task. Fifty out of 72 participants made at least 

one HCM and one HCCR response in the first single-item recognition task and were therefore 

presented with the second single-item recognition task. The mean number of trials in this 

phase was 14 across participants (SE = 2.35, range 2-104 trials). Participants were able to 

discriminate between old and new items in this phase as indicated by the mean confidence 

rating (from 1 = high confidence new to 6 = high confidence old) being greater for old items 

(M = 2.98, SE = 0.15) than new items (M = 2.47, SE = 0.15), t(49) = 3.52, p < .001, BF10 = 

30.11, d = 0.48. Likewise, the hit rate (i.e., classifying HCMs as old; M = 0.37, SE = 0.04) 

was significantly greater than the false alarm rate (i.e., classifying HCCRs as old; M = 0.23, 
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SE = 0.04), t(49) = 2.90, p = .006, BF10 = 6.29, d = 0.45. The mean differences in confidence 

ratings and proportions of old judgments are shown in panels A and B of Figure 9. 

Discussion 

In Experiment 3, when re-presented with HCMs and HCCRs in a second single-item 

recognition task, participants were more likely to judge HCMs to be old and assign them 

higher confidence ratings, compared to HCCRs. As with the previous experiments, this 

demonstrates a residual memory effect for HCMs and that the effect generalises to another 

type of recognition task other than 2AFC. 
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Figure 9  

Mean difference in hit and false alarm rate (panel A) and six-point confidence ratings (panel 

B) for HCMs and HCCRs when presented in the second single-item recognition memory 

phase of Experiment 3. Panels C and D show the expected difference in strength of HCMs 

and HCCRs, given fits of the UVSD and DPSD models to the single-item recognition data. 

Twenty-two individuals did not make any HCMs so are omitted from the experimental data 

panels and model data. One individual had an extreme negative outlying difference in 

expected strength to HCMs and HCCRs in the UVSD model (difference less than -3) and is 

not shown in either the UVSD or DPSD panels. Black circles indicate mean; error bars 

denote 95% confidence interval of the mean. Grey circles denote individual participant data 

(panels A and B) or expected values under each model (panels C and D).  

 

 

Modelling 

UVSD and DPSD models 

 Having established a residual memory effect for HCMs, we turn next to our second 

main aim, which was to determine the extent to which the UVSD and DPSD models could 

predict this effect once their parameters were first fixed by fitting them to the data from the 

initial single-item recognition phase. 
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Fits to the single-item recognition data 

The parameters of the UVSD and DPSD models were obtained from the single-item 

recognition data for every participant in each experiment using maximum likelihood 

estimation. This involved obtaining the likelihood of every response given particular 

parameter values and using the optim function in R (R Core Team, 2023) to obtain the values 

that maximised the summed log likelihood across trials. In Experiment 2, the data of two 

participants could not be fit by the models due to there being no responses in some of the 

stimulus × ratings cells; data from one other participant could not be fit in Experiment 3 for 

the same reason. A number of participants had extreme positive C5 parameter estimates (i.e., 

C5 > 100) when fit by the DPSD model (nine in Experiment 1a, one in Experiment 1b, four in 

Experiment 2, seven in Experiment 3). These participants made no “totally confident old” 

decisions to new items and were not included in the calculation of the mean parameter 

estimates shown in Table 4. In each experiment, we also fit the data aggregated across 

participants and the same pattern of predictions for HCMs that we report below was found in 

each model. 

We assessed the fit of each model by obtaining G2 values for each participant, 

comparing the observed frequencies of each response, and the expected frequencies given the 

parameter estimates. Each model yielded a satisfactory fit to the majority of participants 

across experiments (79-90%), as indicated by G2 values with associated p-values greater than 

0.05 (see Table 5). If anything, the UVSD model tended to fit a greater proportion than the 

DPSD model.  

We also calculated ∆AIC for each model, where the AIC for a participant for a given 

model is AIC = -2ln(L) + 2p, where L is the maximum likelihood value, p is the number of 

free parameters (seven in each model: σo, d, C1-C5 in the UVSD model, and dʹ, Ro, C1-C5 in 

the DPSD model), and ∆AIC is the AIC value minus the AIC for the best fitting model for 
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that participant (Akaike, 1973). Note that both DPSD and UVSD models have an equal 

number of parameters, so comparisons of AIC are equivalent to comparisons of the log 

likelihood. ∆AIC values less than 2 do not distinguish the models, offering little support for 

the best fitting one (Burnham & Anderson, 2002). Although the UVSD model tended to fit 

the majority of participants best by this criterion, the mean ∆AIC values were less than 2 in 

each experiment. Overall, the goodness-of-fit statistics confirm that the models fit the single-

item recognition data well, as might be expected from the literature (e.g., Wixted, 2007; 

Yonelinas & Parks, 2007). Both models also closely reproduced the percentage of HCMs 

found in each experiment (see Table 6). 

 
Table 4  

Mean parameter estimates of the UVSD and DPSD models in each experiment 

 Experiment 
 1a  1b  2  3  
Parameter M SE M SE M SE M SE 
UVSD         

d 1.16 0.08 1.18 0.08 1.83 0.10 1.62 0.08 
σo 1.46 0.04 1.38 0.05 1.58 0.06 1.48 0.04 
C1 -1.42 0.21 -1.98 0.27 -1.02 0.15 -1.69 0.30 
C2 -0.12 0.07 -0.40 0.06 0.18 0.07 -0.13 0.06 
C3 0.82 0.05 0.62 0.05 1.06 0.04 0.87 0.04 
C4 1.31 0.06 1.16 0.05 1.59 0.05 1.48 0.07 
C5 1.93 0.08 1.73 0.06 2.25 0.08 2.27 0.13 

DPSD         
d' 0.50 0.04 0.64 0.07 0.99 0.06 0.88 0.06 
Ro 0.23 0.02 0.23 0.02 0.30 0.02 0.26 0.02 
C1 -1.24 0.18 -1.76 0.22 -0.86 0.12 -1.29 0.16 
C2 -0.11 0.07 -0.36 0.06 0.21 0.06 -0.07 0.06 
C3 0.70 0.04 0.57 0.04 0.99 0.04 0.79 0.04 
C4 1.17 0.05 1.10 0.05 1.50 0.05 1.32 0.06 
C5 5.74 1.54 2.56 0.44 7.42 1.89 5.75 1.18 
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Table 5  

Goodness of fit of the UVSD and DPSD models in Experiments 1-3. 

Experiment 

Percentage of 
participants with 
non-significant 

G2 

ΔAIC 
Percentage of 

participants best fit 
by AIC 

N 

 UVSD DPSD UVSD DPSD UVSD DPSD  
1a 86.11 81.94 1.38 1.53 44.44 55.56 72 
1b 84.72 79.17 0.97 1.16 55.56 44.44 72 
2 90.00 80.00 0.66 1.78 68.57 31.43 70 
3 88.73 81.69 0.47 1.90 61.97 38.03 71 

 

 

Table 6 

Mean percentage (and SE) of each response type across participants according to the 

parameter estimates of the UVSD and DPSD models for each experiment 

 UVSD  DPSD 
 1-2 3 4  1-2 3 4 
 M SE M SE M SE  M SE M SE M SE 

Experiment 1a 
Hit 22.85 1.82 26.33 1.81 50.81 2.48  22.77 1.82 23.59 1.75 53.65 2.44 
Miss 48.82 2.74 30.42 1.82 20.76 2.33  51.47 2.95 30.89 1.94 17.64 2.32 
FA 49.08 2.86 30.94 2.03 19.98 2.22  47.95 2.80 36.06 2.12 15.98 2.34 
CR 40.88 2.86 34.77 1.94 24.35 2.72  39.54 2.71 34.59 1.88 25.86 2.69 

Experiment 1b 
Hit 24.44 1.58 24.47 1.18 51.10 2.23  24.52 1.57 22.37 1.13 53.11 2.18 
Miss 59.57 2.37 29.40 1.65 11.03 1.63  62.05 2.45 29.31 1.74 8.63 1.39 
FA 51.16 2.13 29.05 1.22 19.79 1.88  50.19 2.08 32.73 1.28 17.08 1.90 
CR 49.30 2.37 36.51 1.67 14.19 1.73  48.21 2.33 36.38 1.65 15.42 1.81 

Experiment 2 
Hit 19.48 1.52 23.88 1.93 56.64 2.75  19.66 1.57 22.30 1.91 58.05 2.80 
Miss 51.21 2.78 30.58 2.06 18.20 2.43  53.98 2.91 31.66 2.18 14.35 2.35 
FA 55.72 2.73 27.50 1.87 16.79 2.28  53.83 2.59 32.39 2.00 13.79 2.18 
CR 32.99 2.55 38.90 2.24 28.12 2.75  32.09 2.48 38.24 2.23 29.67 2.77 

Experiment 3 
Hit 22.79 1.82 27.32 1.59 49.89 2.77  23.22 1.86 25.43 1.56 51.35 2.82 
Miss 57.17 2.82 28.25 1.81 14.58 2.04  60.61 3.04 27.85 2.02 11.54 1.92 
FA 55.39 3.41 27.27 1.92 17.35 2.39  52.67 3.14 32.25 1.87 15.08 2.34 
CR 42.86 2.67 36.73 1.90 20.40 2.35  41.54 2.57 36.63 1.85 21.83 2.38 
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Forced-choice accuracy predictions 

For Experiments 1a, 1b, and 2, the parameter estimates were then used to obtain 

predicted accuracy for each 2AFC condition. In Experiment 2, it was not possible to derive 

the expected accuracy in the 6-6 condition of the 2AFC task for those individuals with 

extreme positive C5 estimates in the DPSD model, since derivation of the cumulative normal 

probability failed, so a simulation-based approach was used to derive their predicted accuracy 

in this condition instead. For parity across conditions and models, we obtained predicted 

2AFC accuracy in each condition using this simulation-based approach (which yielded the 

same results as Equations 6-8). For each participant, 200,000 2AFC trials were simulated per 

condition, and the item with the greater strength value on each trial was assumed to be 

selected as the alternative that had been studied. On 6-6 trials in DPSD model, if recollection 

occurred for the old item, it was assumed to be selected, otherwise the item with the greater 

strength value was selected. Even with this simulation approach, derivation of the expected 

accuracy of 6-6 trials in the DPSD model failed for three participants with the most extreme 

C5 estimates (two participants in Experiment 1a, and one in Experiment 1b) since familiarity 

based 2AFC decisions could not be determined. These participants were not included in the 

analysis for this model below. 

Predicted accuracy in each condition is shown in Figure 7. The UVSD model did not 

predict a residual memory effect for HCMs, as indicated by the mean predicted accuracy 

across participants in the 1-1 condition being below or no different from 50%. In Experiment 

1a, predicted accuracy was significantly below 50% (M = 45.39%), t(71) = -4.54, p < .001; 

likewise in Experiment 1b (M = 46.83%), t(71) = -3.22, p = .002. In Experiment 2, predicted 

accuracy did not differ from 50%, (M = 49.02%), t(69) = -0.87, p = .39, and is far below the 

lower limit of the 95% CI on the observed data. The DPSD model did, however, predict the 

effect, as indicated by the predicted mean accuracy being greater than 50% in Experiment 1a 
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(M = 55.76%), t(69) = 11.82, p < .001, Experiment 1b (M = 55.69%), t(70) = 9.38, p < .001, 

and Experiment 2 (M = 60.35%), t(69) = 16.10, p < .001. In each case the predicted effect 

falls inside the observed 95% CI. 

It is also evident from Figure 7 that the UVSD and DPSD models tended to 

numerically underestimate accuracy in the 2-2, 3-3, 4-4, and 5-5 conditions. In this sense, 

there is room for improvement in the quantitative predictions made by both models. Predicted 

accuracy in the 6-6 condition was closer to levels observed in the data. Most importantly 

though, the main qualitative patterns were predicted in the remaining conditions: both models 

predicted that accuracy is greater than chance, tends to be greatest in the 6-6 condition, and is 

generally higher in Experiment 2, where memory was stronger following the encoding 

manipulation employed. 

Second single-item recognition phase predictions 

In Experiment 3, where a second single-item recognition phase was used as the 

additional memory test, Equations 3-5 were used to obtain the expected difference in strength 

to HCMs and HCCRs from the model parameter estimates. We did not derive predictions for 

the hit and false alarm rates or confidence ratings to HCMs and HCCRs in this phase, since 

doing so would require estimating further parameters for this stage (e.g., decision criteria), 

which would require fitting the data from this phase rather than deriving ex ante predictions 

for it. Figure 9 shows that the mean expected strength of HCMs was lower than that of 

HCCRs in the UVSD model, t(70) = -3.88, p < .001, contrary to the observed pattern, but the 

DPSD model predicted the opposite, t(70) = 14.57, p < .001. Assuming that differences in 

strength translate to subsequent levels of discriminability, the UVSD model did not predict 

the residual memory effect for HCMs, and instead predicted a negative effect, whereas the 

DPSD model successfully predicted the effect. 

Other models 
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Alternative distributional assumptions 

 Although the dominant version of the UVSD model is one in which the distributions 

are Gaussian, versions in which the distributions are not Gaussian have occasionally been fit 

in the literature (see e.g., Wixted & Mickes, 2010), and, more broadly, the Gaussian 

assumption in SDT is technically an auxiliary assumption (Kellen et al., 2021). To explore 

the extent to which the mis-prediction of the UVSD model is due to this Gaussian 

assumption, we fit versions of the model where the underlying distributions were either 

Gumbel, logistic, Weibull, lognormal, exponential, or gamma, and then obtained their 

predictions in a similar manner. The parameter estimates are shown in Table 7. These models 

all closely reproduced the percentage of HCMs in each experiment (Table 8) and fits were 

comparable to the Gaussian-UVSD model (Table 9). 

Notably, the Gumbel-, lognormal-, and logistic-UVSD models all still failed to predict 

the residual memory effect for HCMs in Experiments 1a, 1b, and 2 (see Figures 9-12), and 

the expected value for HCMs was lower than that of HCCRs in Experiment 3 (as shown by 

the solid-black points below the zero-difference line in Figure 13). In the Weibull-UVSD 

model, predicted accuracy did not differ from chance in Experiment 1a (M = 49.54%), t(71) = 

-0.66, p = .51, or Experiment 1b (M = 51.00%), t(71) = 1.22 p = .23. However, it was greater 

than chance in Experiment 2 (M = 53.52%), t(69) = 3.81, p < .001, although below the lower 

limit of the 95% CI on the observed effect. The expected strength of HCMs was greater than 

that of HCCRs in Experiment 3, t(70) = 3.37, p < .001, but the predicted difference was very 

small (M = 0.009). In the gamma-UVSD model, predicted accuracy was below chance in 

Experiment 1a (M = 47.60%), t(71) = -2.62, p = .01, and did not differ from chance in 

Experiment 1b (M = 49.43%), t(71) = -0.59, p = .56, or Experiment 2 (M = 51.90%), t(69) = 

1.72, p = .09. Again, these predicted effects fell outside the observed 95% CIs. Expected 
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strength of HCMs and HCCRs also did not differ in Experiment 3, t(70) = 1.06, p = .29 (M 

difference = 0.006).  

Interestingly, the Exponential-UVSD model predicted that 1-1 accuracy was greater 

than chance in Experiment 1a (M = 51.34%), t(71) = 6.38, p < .001, Experiment 1b (M = 

50.68%), t(71) = 5.48, p < .001, and also Experiment 2 (M = 52.07%), t(69) = 7.72, p < .001, 

but, crucially, predicted accuracy was generally much lower than observed empirically. 

Although the predicted effect for Experiment 1a was inside the observed 95% CI, those of 

Experiments 1b and 2 fell outside the observed 95% CIs. The expected strength of HCMs 

was also greater than that of HCCRs in Experiment 3, t(70) = 3.02, p = .004, but again, the 

predicted effect was very small (M difference in strength = 0.007).  

Our explorations of versions of a UVSD model with non-Gaussian distributions show 

that the failure of the UVSD model to predict the residual memory effect for HCMs is not 

due to the Gaussian assumption. Neither the Gumbel, logistic, lognormal, or gamma versions 

of the UVSD model predicted the residual memory effect. The Weibull-UVSD model did 

predict the presence of the effects in Experiments 2 and 3, but not in Experiments 1a and 1b, 

so is unsatisfactory overall. Interestingly, the exponential-UVSD model predicts a positive 

residual memory effect for HCMs and can do so because the likelihood ratio is monotonic 

with strength in this version, but the predicted effects were generally far smaller than we 

observed in our experiments and so in this sense the model is also unsatisfactory.  

We could have extended this exploration by considering yet more distributions (e.g., 

exponentially modified Gaussian distribution), or by using different fixed values for the new 

item distributions, but such an exercise is clearly post hoc. Furthermore, any non-Gaussian 

implementation of the UVSD model would also need to explain the recognition literature at 

least as well as the Gaussian version, and this would require additional investigation. What 

this exploration of non-Gaussian distributions highlights is that, even when the distributions 
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are not Gaussian, it is possible for the likelihood of extreme low strength old items to be 

greater, or practically indistinguishable from the likelihood of new items, which can lead the 

UVSD model to mis-predict the residual memory effect for HCMs. This effect therefore 

represents a serious problem for the model. 

 

Table 7 

Parameter estimates of the 2HT, MSD and non-Gaussian-UVSD models for each experiment 

 
 Experiment 
 1a 1b 2 3 
 M SE M SE M SE M SE 
2HT 

do 0.27 0.02 0.30 0.02 0.37 0.02 0.31 0.02 
dn 0.10 0.01 0.06 0.01 0.16 0.02 0.10 0.01 
g1 0.11 0.02 0.05 0.01 0.11 0.02 0.08 0.01 
g2 0.25 0.02 0.23 0.01 0.30 0.02 0.25 0.01 
g3 0.31 0.02 0.34 0.02 0.29 0.02 0.32 0.02 
g4 0.14 0.01 0.17 0.01 0.15 0.01 0.16 0.01 
g5 0.13 0.01 0.14 0.01 0.13 0.01 0.15 0.01 

MSD 
dʹ 2.74 0.52 2.82 0.37 3.31 0.61 2.17 0.11 
λ 0.58 0.03 0.62 0.03 0.76 0.02 0.73 0.02 
C1 -1.52 0.29 -1.90 0.24 -1.14 0.22 -1.70 0.33 
C2 -0.13 0.07 -0.41 0.06 0.16 0.07 -0.14 0.07 
C3 0.80 0.05 0.61 0.05 1.07 0.04 0.87 0.04 
C4 1.32 0.06 1.25 0.11 1.58 0.05 1.47 0.06 
C5 2.22 0.16 1.94 0.13 2.19 0.07 2.16 0.09 

Gumbel-UVSD 
µo (location) 1.34 0.12 1.44 0.14 2.39 0.17 2.05 0.13 
βo (scale) 2.01 0.08 1.91 0.09 2.59 0.12 2.28 0.10 
C1 -0.86 0.16 -1.33 0.23 -0.59 0.16 -1.31 0.37 
C2 0.31 0.08 0.00 0.07 0.67 0.08 0.29 0.07 
C3 1.50 0.08 1.21 0.08 1.89 0.07 1.59 0.06 
C4 2.30 0.10 2.05 0.10 2.82 0.09 2.62 0.12 
C5 3.46 0.16 3.09 0.13 4.18 0.17 4.30 0.31 

Logistic-UVSD 
µo (location) 1.95 0.14 1.99 0.15 3.15 0.17 2.75 0.15 
so (scale) 1.50 0.04 1.39 0.05 1.62 0.07 1.49 0.04 
C1 -2.96 0.58 -5.32 1.44 -2.32 0.60 -3.80 0.90 
C2 -0.22 0.12 -0.68 0.11 0.30 0.12 -0.22 0.11 
C3 1.37 0.09 1.04 0.09 1.82 0.07 1.48 0.07 
C4 2.22 0.11 1.96 0.10 2.75 0.09 2.53 0.12 
C5 3.35 0.15 2.97 0.12 3.92 0.14 3.90 0.22 
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 Experiment 
 1a 1b 2 3 
 M SE M SE M SE M SE 
Weibull-UVSD 

ko (shape) 2.87 0.07 3.15 0.10 3.34 0.12 3.23 0.08 
λo (scale) 1.47 0.03 1.46 0.03 1.72 0.04 1.63 0.04 
C1 0.53 0.03 0.41 0.02 0.60 0.03 0.50 0.03 
C2 0.84 0.02 0.75 0.02 0.95 0.02 0.84 0.02 
C3 1.16 0.02 1.09 0.02 1.24 0.01 1.18 0.01 
C4 1.33 0.02 1.28 0.02 1.43 0.02 1.39 0.02 
C5 1.57 0.03 1.48 0.02 1.66 0.03 1.68 0.05 

Lognormal-UVSD 
µo 0.29 0.02 0.29 0.02 0.46 0.02 0.40 0.02 
σo 0.37 0.01 0.34 0.01 0.39 0.02 0.37 0.01 
C1 0.75 0.02 0.66 0.02 0.80 0.02 0.72 0.02 
C2 0.98 0.02 0.91 0.01 1.06 0.02 0.98 0.02 
C3 1.23 0.02 1.17 0.01 1.31 0.01 1.25 0.01 
C4 1.40 0.02 1.34 0.02 1.49 0.02 1.46 0.03 
C5 1.65 0.04 1.56 0.02 1.78 0.04 1.84 0.08 

Exponential-UVSD 
λo (rate) 0.39 0.02 0.38 0.02 0.24 0.02 0.27 0.02 
C1 0.25 0.04 0.12 0.02 0.33 0.04 0.21 0.03 
C2 0.71 0.05 0.49 0.04 0.94 0.06 0.67 0.05 
C3 1.62 0.07 1.37 0.07 1.95 0.06 1.67 0.06 
C4 2.44 0.11 2.20 0.10 3.05 0.12 2.89 0.15 
C5 3.83 0.21 3.50 0.17 5.11 0.29 5.70 0.61 

Gamma-UVSD 
ko (shape) 1.70 0.07 1.91 0.07 1.96 0.09 1.91 0.07 
θo (scale) 3.32 0.27 3.18 0.55 4.74 0.52 3.74 0.34 
C1 0.76 0.07 0.49 0.04 0.94 0.08 0.69 0.06 
C2 1.64 0.09 1.30 0.07 2.03 0.09 1.61 0.08 
C3 3.00 0.09 2.65 0.09 3.45 0.08 3.09 0.07 
C4 4.07 0.15 3.71 0.12 4.69 0.12 4.50 0.17 
C5 5.81 0.26 5.15 0.17 6.72 0.27 7.34 0.65 

 

Note. The new item distribution parameters were fixed to the following values in each model. 

Gumbel-UVSD, µn (location) = 0, βn (scale) = 1; logistic-UVSD, µn (location) = 0, sn (scale) 

= 1; Weibull-UVSD, kn (shape) = 3, λn (scale) = 1; lognormal-UVSD, µn = 0, σn = 0.25; 

exponential-UVSD, λn (rate) = 1; gamma-UVSD, kn (shape) = 2, θn (scale) = 1. Four 

participants with an extreme positive value of dʹ in the MSD model were not included in the 

calculation of the means and SE for the parameters of that model (one participant in 

Experiment 1b, three in Experiment 2).  
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Table 8 

Percentage of HCMs produced by the 2HT, MSD and non-Gaussian-UVSD models 

Exp. 2HT MSD Gumbel-
UVSD 

Logistic-
UVSD 

Weibull-
UVSD 

Lognormal-
UVSD 

Exponential-
UVSD 

Gamma-
UVSD 

 M SE M SE M SE M SE M SE M SE M SE M SE 

1a 17.05 2.29 20.23 2.38 21.32 2.34 22.38 2.34 20.33 2.33 20.76 2.33 19.22 2.32 20.48 2.33 

1b 8.29 1.38 10.52 1.45 11.72 1.65 12.67 1.65 10.59 1.60 11.03 1.63 10.70 1.38 10.71 1.62 

2 14.44 2.34 19.02 2.45 19.31 2.43 20.85 2.41 17.55 2.43 18.20 2.43 18.64 2.24 17.78 2.44 

3 11.42 1.89 14.77 2.08 15.46 2.05 16.77 2.04 14.03 2.02 14.58 2.04 14.46 1.87 14.22 2.04 

 

 

Table 9 

Goodness of fit of the 2HT, MSD and non-Gaussian-UVSD models 

  Percentage of participants with non-significant G2 

Exp. n 2HT MSD Gumbel-
UVSD 

Logistic-
UVSD 

Weibull-
UVSD 

Log-
normal-
UVSD 

Exponential-
UVSD 

Gamma-
UVSD 

1a 72 51.39 90.28 76.39 69.44 88.89 86.11 88.89 88.89 

1b 72 48.61 86.11 76.39 77.78 84.72 84.72 81.94 86.11 

2 70 17.14 90.00 84.29 82.86 92.86 90.00 80.00 90.00 

3 71 26.76 90.14 85.92 81.69 92.96 88.73 87.32 90.14 

 

2HT 

 Although our main interest was in comparing the UVSD and DPSD models, we also 

explored two other popular models. First, we considered the 2HT model (Snodgrass & 

Corwin, 1988), which is a discrete state model of recognition. The model assumes that old 

items are detected as “old” with probability do, whereas new items are detected as “new” with 

probability dn. If an item is detected, it receives a high confidence decision (“sure old” if in 

the do state, and “sure new” if in the dn state). If an item is not detected, then the probability 
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with which it will receive a given confidence rating is based on a guessing parameter, gj, 

where j = 1…6 (e.g., with probability g1 for the 1 “sure new” rating), and g1-g6 sum to 1.  

For new items, the probability of a particular rating j is therefore given as 

 

𝑃𝑃(𝑗𝑗| 𝑛𝑛𝑛𝑛𝑛𝑛) = 𝑑𝑑n𝑟𝑟n + (1 − 𝑑𝑑n)𝑔𝑔𝑗𝑗 

 

where rn = 1 when j = 1, and rn = 0 when j = 2-6. For old items, the probability of a given 

rating is given as: 

 

𝑃𝑃(𝑗𝑗| 𝑜𝑜𝑜𝑜𝑜𝑜) = 𝑑𝑑o𝑟𝑟o + (1 − 𝑑𝑑o)𝑔𝑔𝑗𝑗  

 

where ro = 1 when j = 6, and 0 when j = 1-5.  

More complex versions of the model allow for the do and dn states to give rise to 

intermediate confidence levels, but we did not implement these versions because they are not 

identifiable when there is only a single old item and a single new item condition, as is the 

case in our experiments (see Moran, 2016, for further details), and their parameters therefore 

cannot be estimated (but see Bröder et al., 2013, who fit such a model when the parameters 

were sufficiently constrained). 

 The percentage of HCMs reproduced by the model for each experiment is shown in 

Table 8. The model generally did not fit the data from individual participants as well as the 

other models (see Table 9), and did particularly poorly in Experiments 2 and 3, where, unlike 

the other models, it did not fit the majority of participants. Predicted 2AFC accuracy in each 

condition was obtained by adapting the equations described in Ma et al. (2022) but for a 1-6 

ratings scale rather than binary “old” / “new” judgments. 2AFC accuracy is given for 1-3 

ratings (i.e., “sure-”, “medium-” and “high-confidence new”) as: 
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𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐| 𝐽𝐽 =  1, 2, 3) =
𝑑𝑑n𝑟𝑟n + 0.5(1 − 𝑑𝑑n)𝑔𝑔𝑗𝑗
𝑑𝑑n𝑟𝑟n + (1 − 𝑑𝑑n)𝑔𝑔𝑗𝑗

 

 

 

where j = J, and rn = 1 when j = 1, and rn = 0 when j = 2 or j = 3. 2AFC accuracy for 4-6 

ratings (i.e., “sure-”, “medium-” and “high-confidence old”) is given as: 

 

𝑃𝑃(𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐| 𝐽𝐽 =  4, 5, 6) =
𝑑𝑑o𝑟𝑟o + 0.5(1 − 𝑑𝑑o)𝑔𝑔𝑗𝑗
𝑑𝑑o𝑟𝑟o + (1 − 𝑑𝑑o)𝑔𝑔𝑗𝑗

 

 

where ro = 1 when j = 6, and ro = 0 when j = 4 or j = 5.  

The model correctly predicted a residual memory effect for HCMs in each experiment 

(sees Figures 10-12), but the prediction was clearly greater than was observed empirically 

and outside the observed 95% CIs. It also predicted a memory effect on 6-6 trials (which was 

greater than that in the 1-1 condition), but again, this was clearly greater than observed 

empirically. The model incorrectly predicted accuracy would be at chance in the remaining 2-

2, 3-3, 4-4, 5-5 conditions, due to the items appearing in such conditions arising only from 

guessing states. Since the model is a discrete-state model, we did not derive expected strength 

values for HCMs and HCCRs for Experiment 3, as we did for the other models. 

Mixture Signal Detection Model 

 Lastly, we considered the mixture signal detection (MSD) model (DeCarlo, 2002). In 

this model, the studied item distribution is actually a mixture-distribution, made up of an 

attended (or more strongly encoded) item distribution and a non-attended (or more weakly 

encoded) distribution, representing the possibility that items may have been encoded in 

different states. Studied items are represented by the attended distribution with probability λ. 
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The remaining studied items are represented by a strength distribution with a lower mean 

value, with probability (1 - λ). The distributions are assumed to be Gaussian with equal 

variances. This means that the model does not have the same capacity to mis-predict the 

residual memory effect for HCMs as the UVSD model because, unlike the UVSD model, and 

as pointed out by DeCarlo (2002), the likelihood ratio is monotonic with the strength axis. 

In the MSD model, when the mean of the non-attended distribution is greater than that 

of the new item distribution, but less than that of the attended old distribution, the model is 

not identifiable when there is only a single old-new item condition, as is the case in our 

experiments. A simplifying assumption is often made where the mean of the non-attended 

distribution is set equal to that of the new item distribution (e.g., DeCarlo, 2002; Spanton & 

Berry, 2020), and this model is identifiable with the design. The probability of a given rating 

j to an old item is given as: 

 

𝑃𝑃(𝑗𝑗| old) =  𝜆𝜆 �Φ�𝐶𝐶𝑗𝑗,𝑑𝑑ʹ� − Φ�𝐶𝐶𝑗𝑗−1,𝑑𝑑ʹ�� + (1 − 𝜆𝜆) �Φ�𝐶𝐶𝑗𝑗� − Φ�𝐶𝐶𝑗𝑗−1��  

 

where j = 1…6, and C6 = ∞, C0= -∞. The probability of a given rating j to a new item is given 

as: 

 

𝑃𝑃(𝑗𝑗| new) = Φ�𝐶𝐶𝑗𝑗� − Φ�𝐶𝐶𝑗𝑗−1�  

 

The parameter estimates of the model when fit to the single-item recognition data are 

shown in Table 7. Like the other models, it closely reproduced the percentage of HCMs in 

each experiment (Table 8). It also tended to fit the majority of participants (Table 9). As is 

shown in Figures 10-12, the model predicted the residual memory effect for HCMs in the 1-1 

condition in Experiment 1a (M = 59.54%), t(71) = 16.18, p < .001, Experiment 1b (M = 
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59.37%), t(71) = 14.62, p < .001, and Experiment 2 (M = 64.84%), t(69) = 22.08, p < .001, 

with the predicted effects falling within the observed 95% CIs. It also predicted the other 

trends in the accuracy data reasonably well. Similarly, it predicted the residual memory effect 

in Experiment 3 (Figure 13), t(70) = 13.37, p < .001, and the mean predicted difference in 

strength to HCMs and HCCRs was nonnegligible (M = 0.17). 

 

Figure 10 

Predicted 2AFC accuracy according to the 2HT, MSD, and non-Gaussian-UVSD models 

when fit to the data from Experiment 1a shown in Figure 7. 
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Figure 11 

Predicted 2AFC accuracy of the 2HT, MSD, and non-Gaussian-UVSD models when fit to the 

data from Experiment 1b shown in Figure 7. 

 

Figure 12 

Predicted 2AFC accuracy of the 2HT, MSD, and non-Gaussian-UVSD models when fit to the 

data from Experiment 2 shown in Figure 7. 
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Figure 13 

Expected difference in strength values of HCMs and HCCRs in the MSD and non-Gaussian-

UVSD models when fit to the data of Experiment 3 shown in Figure 9.  

 

 

 

General Discussion 

 We investigated whether a residual memory effect for HCMs exists and the 

implications of such an effect for the phenomenon of everyday amnesia and decision models 

of recognition. Residual memory for HCMs was found in 1) a modified 2AFC task in which 

the alternatives are matched in terms of their previous single-item recognition response 

(Experiment 1a, 1b, 2), and 2) a second single-item recognition task in which HCMs and 

HCCRs must be discriminated (Experiment 3). The effect was demonstrated with face stimuli 

(Experiments 1a, 2, 3) and also word stimuli (Experiment 2), and under study instructions to 

memorise the study stimuli (Experiments 1a and 1b) and under more demanding encoding 

conditions requiring a semantic decision to each studied stimulus (Experiments 2 and 3).  

Implications for Everyday Amnesia 

 Although participants may say with total confidence that they do not remember 

previously studying an item, and in this sense complete and rapid forgetting of the item’s 
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presentation during the study phase (and hence everyday amnesia) can be said to have 

occurred (Roediger & Tekin, 2020), participants are still able to reliably discriminate such 

items from HCCRs, which are matched in terms of the previous response received. This 

demonstrates that HCMs are not permanently lost from memory or inaccessible, and that the 

forgetting that occurs for HCMs in the first single-item recognition phase is due to retrieval 

failure and not necessarily the loss of a fully processed item from memory (Miller, 2021). 

Implications for Decision Models 

 The residual memory effect for HCMs discriminated between dominant decision 

models of recognition. Importantly, the experiments provided strong tests (Platt, 1964) of the 

models as parameter-free predictions were derivable. When fit to the single-item recognition 

data, the UVSD model closely reproduced the proportion of HCMs, but when using these 

same parameter estimates to derive predictions for residual memory effects for HCMs, it 

incorrectly predicted either a sub-chance effect (Experiments 1a and 1b) or no effect 

(Experiment 2). The misprediction arises because, when the value of σo (the variance of the 

old item distribution) is greater than that of σn (the variance of the new item distribution), the 

expected strength of HCMs can actually be lower than that of HCCRs. This prediction is 

counterintuitive from a psychological perspective; it is not clear why studying an item would 

endow it with a lower strength value, relative to a non-studied item. Despite this feature being 

often acknowledged, this has not prevented the widespread adoption of the model over the 

past few decades (Egan, 1958; see Rotello, 2017; Wixted, 2007, for reviews), presumably due 

to its successes in accounting for other aspects of recognition data. To our knowledge though, 

evidence relevant to this specific feature of the model does not exist, and our findings 

therefore constitute the first direct evidence against it: our findings imply that the mean 

strength of HCMs is greater than that of HCCRs, not lower (or equal). Moreover, the UVSD 

model was still unable to sufficiently predict the effect in each experiment when non-
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Gaussian distributions (Gumbel, logistic, lognormal, Weibull, exponential, gamma) were 

assumed. 

 Other models, however, did not suffer from the same problem as the UVSD model. 

The DPSD and MSD models successfully predicted the residual memory effect for HCMs in 

each experiment. Unlike the UVSD model, HCMs (and HCCRs) in these models are the 

product of an equal variance signal detection process, meaning that the negative effect for 

HCMs will not occur because the likelihood ratio is monotonic with the strength axis in these 

models. The expected strength of HCMs will always be greater than that of HCCRs whenever 

the mean strength of old items is greater than that of new items. 

 The 2HT model was also fit to the data and was able to predict the memory effect for 

HCMs, but substantially overestimated it (likewise for accuracy in the 6-6 condition). It also 

incorrectly predicted chance-levels of accuracy in the other 2AFC conditions. Future research 

should explore whether more complex versions of the 2HT model make more accurate 

predictions in extended experimental designs (e.g., with multiple old item conditions) that 

allow the parameters of more complex versions of the model to be identified (Moran, 2016).  

Related recent studies 

 Others have recently used a similar approach to the one we have taken here. Ma et al. 

(2022) identified competing predictions of the UVSD and 2HT models in a single-item 

recognition paradigm with old/new ratings and where a payoff manipulation was used to 

manipulate response bias. They found that neither model satisfactorily predicted the relative 

bias effects on forced-choice accuracy. The DPSD model was found to produce a better 

quantitative prediction for the effect, but their data did not distinguish between competing 

qualitative predictions of the models in the way that ours do.  

 Dobbins (2023) recently found evidence against the UVSD model using a three-

alternative forced choice (3AFC) test, in which participants must select the new item when 
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presented with two alternatives that are old items. Once fit to single-item recognition data, 

estimates of σo in the UVSD model were found to be positively correlated with 3AFC 

accuracy across participants, whereas the model actually predicted a negative correlation. 

Accuracy was, however, positively correlated with estimates of Ro in the DPSD model, as 

predicted by this model. Furthermore, estimates of σo and d in the UVSD model were 

positively correlated across participants.1 This correlation would occur if, as σo increases, 

estimates of d become greater to compensate for the depression in the upper portion of the 

ROC that results. Interestingly, σo and d were also positively correlated when the UVSD 

model was fit to data generated from the DPSD model. In this sense, the DPSD model 

predicted the UVSD model’s mispredictions. As in our study, the UVSD model’s 

mispredictions were made despite providing slightly better fits to the data than the DPSD 

model. This again demonstrates the value of deriving and testing the predictions of models in 

additional tasks as we have done here, rather than relying solely on the goodness of fit of the 

models. 

 These two studies, together with ours, converge on highlighting problems for the 

UVSD model in predicting performance in additional tasks once its parameters are fixed by 

first fitting it to single-item recognition data. Furthermore, recent attempts to validate a 

psychological explanation offered for the unequal-variance assumption in the UVSD model 

in terms of encoding variability have proven unsuccessful (Spanton & Berry, 2020, 2022). 

Thus, although the UVSD model has been popular for several decades, these recent studies 

along with our findings here highlight major issues for the model.  

Everyday amnesia and organic amnesia 

 Roediger and Tekin (2020, p. 6) defined amnesia as rapid and complete forgetting and 

argued that the occurrence of HCMs in memory-intact individuals implies that amnesia 

“occurs in all people (not just amnesia patients)” (p. 1). In light of the findings reported here, 
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to what extent is it reasonable to maintain this degree of continuity between everyday and 

organic amnesia? 

 If forgetting in explicit memory must be complete in order to qualify as amnesia, then 

the present findings clearly challenge Roediger and Tekin’s (2020) claim. Residual memory 

exists for forgotten items, even ones classified as new with complete confidence. Although 

left largely implicit, this was in effect the whole point of the critiques of Levi et al. (2022) 

and Goshen-Gottstein et al. (2022). To the extent that SDT can explain HCMs, it does so by 

regarding these items simply as ones which fall below the relevant decision criterion; with a 

different criterion placement, these items would receive a different rating. Levi et al. (2022) 

and Goshen-Gottstein et al. (2022) were incorrect in suggesting that the UVSD model could 

explain the properties of HCMs, but the more general point that SDT (particularly as 

instantiated in the DPSD model) explains HCMs in terms of residual memory is correct, as 

we have shown here. 

 But just because the occurrence of HCMs in memory-intact individuals fails to meet 

Roediger and Tekin’s definition of amnesia does not mean that it is unrelated to organic 

amnesia. Indeed a considerable body of work attempts to conceptualize organic amnesia 

precisely in terms of the DPSD model (see e.g., Yonelinas et al., 2010; Yonelinas et al., 2022, 

for reviews). Moreover, as we have argued elsewhere, complete forgetting in individuals with 

amnesia (that is, recognition at chance) occurs only in rare cases and can often be attributed 

to insufficient power to detect small residual memory effects (see Berry et al., 2014, for 

discussion; see also Wixted & Squire, 2004). 

 After outlining an SDT-based account of organic amnesia, in which the old and new 

item distributions are largely overlapping, Roediger and Tekin asked: “Will the scientific 

world accept the SDT-based explanations of anterograde amnesia… proposed here? We 

suspect not. SDT provides a useful conceptualization of the underlying memory signals and 
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the decision criteria, not a theoretical explanation in terms of psychological constructs or 

neural processes of why they are depicted as they are. Likewise, we do not find the SDT 

interpretation of everyday amnesia to be an explanation, for the same reasons.” We disagree. 

SDT explains recognition memory phenomena including HCMs in term of theoretical 

constructs (signal and noise distributions, decision criteria) and the DPSD model explains the 

occurrence and detailed nature of residual memory, whereas the UVSD model does not. 

These explanations are equally applicable to both organic and everyday amnesia. 

Potential limitations 

 A potential limitation of our findings is that, given that we used conventional 

procedures for testing recognition memory—namely, a single study-test phase separated by a 

retention interval—it is possible that the underlying memory state or strength of an item may 

have changed from its presentation in the first recognition test to the second (see also Ma et 

al., 2022, for a discussion of this issue). Memory for HCMs could, for example, have been 

weaker with the longer retention interval, or items could move from a detect state to a not 

detected state (from the perspective of the 2HT model), or from the attended item distribution 

to the unattended item distribution (from the perspective of the MSD model). We adopted a 

conventional single-item recognition design because we wanted to replicate the percentage of 

HCMs under the same conditions reported by Roediger and Tekin (2020). In the future, 

however, the predictions of other instantiations of these models that allow for the memory of 

individual items to change from one phase to the next could be explored. If, for example, 

memory weakens over time, and the variance of the old relative to the new item distribution 

is linked to overall strength as some have observed (e.g., Spanton & Berry, 2020, 2022), then 

the UVSD model predictions may be more similar to those that would be made under equal 

variance assumptions, and the model may therefore not mis-predict the residual memory 

effect for HCMs. 
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 An issue with this account, however, is that, aside from being post hoc, it would need 

to be subjected to empirical test by devising a method to confirm that the value of σo is 

equivalent to that of σn in the additional memory test, despite the fact that studied and non-

studied items can be discriminated reasonably well in this test, as our experiments showed. 

For example, overall accuracy across 2AFC conditions in Experiment 2 was 64.11% correct, 

the mean difference in the hit and false alarm rate in the second single-item recognition phase 

of Experiment 3 was 0.14, and these values would likely have been much greater had the 

alternatives not been matched for their previous single-item recognition response. Moreover, 

this type of post hoc explanation is not necessary to explain the ability of the DPSD and MSD 

models to successfully predict the residual memory effect for HCMs. 

 Finally, it is also possible that the first recognition test influenced performance on the 

second recognition test by acting as an additional learning episode. The UVSD model might 

be able to account for the residual memory effect for HCMs once the increment in strength 

that occurs for items as a result of their presentation in the first test is taken into account. If 

the increment is inversely related to an item’s strength (Bjork & Bjork, 1992; Storm et al., 

2008), then the increment for HCMs might be expected to be greater than that for HCCRs, 

and their strength for the second test will then be more likely to be greater than that of 

HCCRs, giving rise to the residual memory effect for HCMs. A problem with this account is 

that, for the other single-item recognition rating categories (e.g., items receiving a “2 – 

medium confidence new” rating), the expected strength of non-studied items is lower than 

that of studied items under the UVSD model (discussed further in Lee et al., 2024). If the 

increment these items receive from the first test is also inversely related to strength, the non-

studied items would be expected to receive a greater strength increment than the studied 

items receiving the same rating. Expected 2AFC accuracy in all but the 1-1 condition ought 

then to be below 50%, yet this is not what we observed in our experiments. Indeed, in 
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Experiment 2, accuracy was reliably above 50% in all 2AFC conditions. Thus, this 

explanation of the residual memory effect for HCMs in terms of the UVSD model comes at 

the expense of mispredicting accuracy in the other 2AFC conditions and is therefore 

implausible. 

Conclusions 

 Our conclusions are twofold: First, the residual memory effect for HCMs 

demonstrates that even though a studied item receives a “new” decision with total confidence 

in a recognition test, memory of the item is not completely lost. If given another opportunity, 

be it in a 2AFC task or additional single-item recognition task, participants can reliably 

distinguish these items from HCCRs. Second, once the parameters of the UVSD and DPSD 

models were fixed by fitting them to the single-item recognition data, they made opposing 

predictions. Specifically, the residual memory effect for HCMs was not predicted by the 

UVSD model, which instead tended to predict a sub-chance effect or an absence of an effect, 

providing evidence against this model. In contrast, the DPSD model did predict the effect, 

and this is due to the equal variance signal detection process assumed to give rise to HCMs 

and HCCRs. For the same reason, in additional modelling, the MSD model was found to 

correctly predict a residual memory effect for HCMs. The 2HT model also predicted the 

effect, but tended to overpredict it and incorrectly predicted an absence of memory on all 

other 2AFC trial types except 6-6 trials. The residual memory effect for HCMs therefore 

distinguished between decision models of recognition and provides a new benchmark for 

testing such models. 

Constraints on Generality 

 We observed the residual memory effect for HCMs using a variety of stimuli (words, 

faces), and recognition tasks (2AFC and single-item recognition tasks). The stimuli were 

selected from the same sources used by Tekin and Roediger (2017) (words from Nelson et 
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al., 2004; faces from Minear & Park, 2004), whose data, like ours, demonstrate the 

phenomenon of everyday amnesia (HCMs). Although we expect our findings to generalize to 

other types of stimuli typically used in recognition tasks (e.g., pictures of objects or scenes), 

it will be important to demonstrate this in future research. As in Tekin and Roediger (2017), 

our participants were adults in higher education—all were students at the University of 

Plymouth, and almost all were studying psychology—and tended to be younger (18-32 

years). Although we expect our findings to generalise to other age groups and similar 

participant pools, it will be important to demonstrate this in future research. We have no 

reason to believe that the results depend on other characteristics of the participants, materials, 

or context. 
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Footnotes 

1 Estimates of σo and d were similarly positively correlated in each of our experiments 

(0.42 < rs < 0.73). Following Dobbins (2023), we also explored whether estimates of the 

memory evidence parameters in the UVSD and DPSD models were correlated with 

performance in the additional task, specifically 1-1 accuracy. This analysis did not shed 

further light on our model results though. In the UVSD model, although estimates of σo were 

strongly negatively correlated with predicted 1-1 accuracy across individuals (rs < -0.73 in 

Experiments 1a, 1b, and 2), they were not reliably correlated with observed 1-1 accuracy 

(0.08 < rs < 0.16). Estimates of d were also not correlated with predicted 1-1 accuracy (-0.14 

< rs < 0.02). In the DPSD model, estimates of dʹ were strongly positively correlated with 

predicted 1-1 accuracy (rs > 0.92), but not with observed 1-1 accuracy (-0.14 < rs < 0.28). 

Estimates of Ro were also not consistently correlated with 1-1 accuracy across experiments (-

0.06 < rs < 0.3). 


