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1   |   INTRODUCTION

Populations are aging rapidly in all parts of the world, but 
extended lifetime is generally not spent in best health, be-
cause of age-related disorders that are linked to the func-
tional decline of various organs.1 Sarcopenia, for instance, 
may be defined as a progressive and generalized skeletal 
muscle disorder that involves accelerated loss of muscle 
mass and function,2 and contributes significantly to the 
frailty that compromises the quality-of-life for millions of 
elderly individuals worldwide.3,4 The underlying causes of 
sarcopenia include malnutrition, inactivity, and disease, 
as well as drugs and hospital admission.2 Skeletal muscle 

quality is thus not only lost with old age (primary sarcope-
nia) but also in association with diseases such as cancer,5 
type 2 diabetes,6 cardiovascular disease,7 chronic obstruc-
tive pulmonary disease,8 chronic kidney disease,9 advanced 
liver disease,10 as well as with acute and chronic critical ill-
ness.11 Obesity is an important risk factor for these chronic 
disorders, and disease-related secondary sarcopenia also 
occurs in individuals with excess body fat.12 The estimated 
global prevalence of sarcopenia is imprecise, between 10% 
and 27%, as epidemiology statistics are confounded by vari-
able classification and cut-off points for skeletal muscle 
mass and function,13,14 but loss of muscle quality with age 
clearly adds to overall healthcare costs.15
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Abstract
Sarcopenia lowers the quality-of-life for millions of people across the world, as 
accelerated loss of skeletal muscle mass and function contributes to both age- and 
disease-related frailty. Physical activity remains the only proven therapy for sar-
copenia to date, but alternatives are much sought after to manage this progressive 
muscle disorder in individuals who are unable to exercise. Mitochondria have 
been widely implicated in the etiology of sarcopenia and are increasingly sug-
gested as attractive therapeutic targets to help restore the perturbed balance be-
tween protein synthesis and breakdown that underpins skeletal muscle atrophy. 
Reviewing current literature, we note that mitochondrial bioenergetic changes in 
sarcopenia are generally interpreted as intrinsic dysfunction that renders muscle 
cells incapable of making sufficient ATP to fuel protein synthesis. Based on the 
reported mitochondrial effects of therapeutic interventions, however, we argue 
that the observed bioenergetic changes may instead reflect an adaptation to path-
ologically decreased energy expenditure in sarcopenic muscle. Discrimination 
between these mechanistic possibilities will be crucial for improving the manage-
ment of sarcopenia.
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While functional and structural muscle phenotypes 
share some similarities between primary and second-
ary sarcopenias, differences in the underlying pathol-
ogy are likely to complicate the clinical management of 
elderly people, who often suffer from sarcopenia with 
multiple causes.2 Exercise is recommended as the pri-
mary treatment of sarcopenia,16 possibly with dietary 
supplements to improve benefits,14 while no single 
anti-sarcopenic drug has been approved to date.2,14 
Novel therapeutic solutions are much needed to treat 
sarcopenia in frail elderly and diseased individu-
als, who are unable to restore skeletal muscle quality 
through increased physical activity.

The notion that exercise and nutrition are major pil-
lars in sarcopenia management17 strongly suggests the 
involvement of bioenergetic failure in disease develop-
ment. Indeed, compromised ATP synthesis capacity has 
been recognized as an important feature of primary and 
secondary sarcopenia for some time.18,19 Many aspects of 
mitochondrial function and dysfunction have been im-
plicated in different types of sarcopenia,20–23 but causal 
interrelations with other cellular defects that are asso-
ciated with this multifactorial muscle disorder have not 
been established conclusively. Such defects include loss 
of skeletal muscle insulin sensitivity24 and a perturbed 
balance between myocellular protein synthesis and 
protein breakdown that favors muscle protein loss.25 
Since insulin resistance and perturbed proteostasis 
are both associated with inflammation26 and oxidative 
stress,27 these cellular defects are also likely function-
ally related to the observed changes in mitochondrial 

activity. Primary sarcopenia is further characterized by 
hormonal changes,28 a decline in the number of skel-
etal muscle satellite cells,29–32 muscle fiber type tran-
sitions,33 the loss of neuromuscular junctions,34 and 
by fat infiltration within and between muscle fibers.2 
Secondary sarcopenia is complicated by the patholog-
ical milieu, as muscle dysfunction may be triggered or 
exacerbated by therapeutics such as corticosteroids35 
and by disease-specific manifestations such as the toxic 
retention of solutes in chronic kidney disease.36

In this review, we give our perspective on mitochon-
drial involvement in sarcopenia, stressing the incom-
pletely understood interrelation between myocellular 
proteostasis and bioenergetics. Citing human studies 
where possible, we explore how exercise and nutrition 
affect sarcopenic muscle mitochondria, and we briefly re-
flect on the promise and risk of emerging mitochondria-
focussed management strategies.

2   |   MITOCHONDRIAL CHANGES 
IN SARCOPENIC MUSCLE

Age-dependent decline in aerobic capacity coincides with 
changes in skeletal muscle energy metabolism,37,38 and mi-
tochondrial dysfunction has been identified as hallmark of 
aging.39 Sarcopenia appears invariably linked with oxida-
tive stress (Figure 1), a unifying pathological condition that 
is at least partly responsible for compromised mitochon-
drial quality control,40,41 mitochondrial bioenergetics,14,42 
and mitochondrial redox biology43 in sarcopenic muscle.

F I G U R E  1   Mitochondrial changes 
in sarcopenic muscle. Loss of skeletal 
muscle mass and function with age is 
characterized by increased production of 
reactive oxygen species (ROS), decreased 
oxidative phosphorylation, mitochondrial 
biogenesis, and mitophagy, and perturbed 
redox signaling. Created with BioRe​nder.​
com.
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2.1  |  Mitochondrial redox biology

Oxidative stress results from a decreased expression 
of antioxidant defense systems and from the increased 
formation of reactive oxygen species (ROS) that, to a 
large extent, is accounted for by mitochondria.43–48 High 
ROS levels interfere with the mitochondrial redox biol-
ogy that contributes to the physiological regulation of 
insulin49 and other anabolic signaling pathways,50 and 
thus inhibit protein synthesis.51 Consequent pertur-
bance of proteostasis25 is made worse by stimulatory 
effects of high ROS levels on proteolysis: oxidation of 
proteins by ROS renders them generally more suscepti-
ble to proteasome-mediated breakdown, at least partly 
because oxidation causes unfolding.52 Indeed, preven-
tion by ROS of the activation of the mammalian target of 
rapamycin complex 1 (mTORC1) increases expression 
of muscle-specific E3 ligases that effect proteasome-
mediated protein breakdown.43 Increased autophagy 
through ROS-prevented activation of mTORC153 as well 
as ROS-induced expression of calcium-activated pro-
teases54 further tip the proteostasis balance toward loss 
of protein. ROS thus provokes skeletal muscle dysfunc-
tion and atrophy, and clinical studies have indeed dem-
onstrated that oxidative damage increases with age55 
and is associated with impaired muscle strength.56

Oxidative stress that leads to sarcopenia during aging,57 
inactivity,58 and chronic disease59 is likely related to a per-
sistent state of low-grade systemic inflammation26 in which 
production of ROS is stimulated by proinflammatory cy-
tokines.60 Conditions in which sarcopenia develops are 
furthermore characterized by a perturbed bioenergetic bal-
ance where nutrient availability in muscle cells outweighs 
energy expenditure,12 and nutrient catabolism creates a re-
duced cellular environment that permits ROS generation.20 
ROS likely exacerbate inflammation61 and may thus rein-
force their own formation. Preventing ROS levels in muscle 
tissue from becoming too high seems an attractive thera-
peutic option to combat sarcopenia, and certain nutritional 
and mitochondria-targeted pharmacological interventions 
(see below for detail) indeed have an antioxidant rationale. 
However, antioxidant-based therapies might be counter-
productive, as insulin and anabolic signaling paths crucial 
for proteostasis are regulated physiologically by ROS.49,50 
Because of this ROS duality, the anti-sarcopenic promise 
of antioxidant therapies has been questioned.62 Future 
antioxidant-based interventions will likely benefit from a 
more complete understanding of mitochondrial redox bi-
ology, and from more detailed insight in the molecular na-
ture and origin of the ROS responsible for the progressive 
shift toward oxidative stress that is evident as primary and 
secondary sarcopenia develop.

2.2  |  Mitochondrial quality control

Mitochondrial biogenesis, mitophagy and structural dy-
namics are important for mitochondrial quality control, 
as these processes maintain functional capacity,63,64 re-
move redundant or dysfunctional organelles,65 and re-
model organelle morphology,66 respectively. Regulation 
of these processes is reviewed in detail by others,40,64 and 
it suffices to mention here that such regulation is dis-
rupted in both primary and secondary sarcopenic skele-
tal muscle, at least partly owing to oxidative stress, such 
that the myocellular ability to replace dysfunctional 
with functional mitochondria is lowered.67 Functional 
capacity furthermore depends on regulation of the 
highly variable turnover of individual mitochondrial 
proteins,68 which may change in aging skeletal muscle. 
Compromised quality control of mitochondria likely 
contributes to the decreased oxidative capacity of sarco-
penic muscle,14,42 although it remains also possible that 
molecular signs of attenuated mitochondrial biogenesis 
reflect a lowered demand for oxidative capacity. It is, 
for example, possible that anabolic resistance of protein 
synthesis69 lowers total energy expenditure, which is ex-
pected to decrease oxidative ATP synthesis given that 
control of skeletal muscle energy metabolism is demand-
driven70 (Figure 2) and given that a significant propor-
tion of overall muscle ATP supply (approximately 20%) 
is generally allocated to protein synthesis.71,72 In this re-
spect, it is worth stressing that therapeutic interventions 
aimed at boosting oxidative capacity through improved 
mitochondrial biogenesis would be of limited success if 
demand for such increased capacity remained low.

2.3  |  Mitochondrial bioenergetics

Skeletal muscle bioenergetics have been investigated ex-
tensively in human with phosphorus-31 magnetic reso-
nance spectroscopy (31P MRS).73 For instance, in  vivo 
measurements of the rate by which phosphocreatine 
(PCr) is recovered after exercise have provided much 
insight in the capacity of oxidative phosphorylation in 
healthy individuals as well as people living with chronic 
disease. Indeed, 31P MRS established relatively early on 
that the PCr recovery rate of skeletal muscle decreases 
with age19,74,75 as sarcopenia develops. Secondary sar-
copenia is also associated with decreased PCr recov-
ery rates, as, for example, revealed in patients with 
dialysis-dependent chronic kidney disease,76 chronic 
lung disease,77 thyroid disorders,78 and heart failure.77 
These (patho)physiological observations are corrobo-
rated by studies on human skeletal muscle biopsies that 
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also demonstrate an age-dependent decline in the rate 
of PCr recovery after exercise.74,79 In  vivo and ex  vivo 
data thus both strongly suggest that the oxidative ATP 
synthesis capacity of sarcopenic skeletal muscle is lower 
than that of healthy muscle. Perturbed calcium han-
dling in sarcopenic muscle80 may further dysregulate 
oxidative metabolism. Notably, age effects on oxidative 
capacity remain generally heterogeneous.81 Variable ha-
bitual physical activity as well as the sex of the studied 
individuals contribute to this heterogeneity, as does the 
variety of skeletal muscle groups probed81—these vari-
ables need to be taken into account when age effects on 
mitochondrial ATP synthesis are interpreted. Notably, 
age does not only decrease the capacity of skeletal mus-
cle oxidative phosphorylation but also the efficiency by 
which mitochondrial respiration and ATP synthesis are 
coupled.42,82

PCr-recovery-after-exercise measurements remain 
arguably the most reliable, albeit indirect, way to quantify 
oxidative mitochondrial ATP supply in human,83–85 but 
obtained information is restricted to bioenergetic capacity 
and offers limited insight in ATP synthesis activity under 
conditions of varying energy demand. In this respect, it 
is noteworthy that the causal relation between decreased 
oxidative capacity and perturbed proteostasis in aged skel-
etal muscle remains uncertain. Explicitly or implicitly, it 
is often argued that the rate of protein synthesis is low-
ered in sarcopenia because dysfunctional mitochondria 
are unable to sufficiently sustain this and other anabolic 
processes energetically,20–23,86 but it is equally conceivable 
that the decreased oxidative phosphorylation capacity is 
an adaptation to lowered ATP demand from the depressed 

anabolism that follows from insulin and anabolic resis-
tance69,87 (Figure 2).

3   |   RESPONSE OF SKELETAL 
MUSCLE MITOCHONDRIA TO 
THERAPEUTIC INTERVENTIONS

Current management of sarcopenia aims to build muscle 
mass by increasing physical activity, improving nutri-
tion, and by optimizing hormonal homeostasis.17 To date, 
exercise remains the sole proven therapy of these three 
management pillars.88,89 Dietary supplementation seems 
only beneficial when combined with exercise,2,14,90 and 
although the pharmacological use of vitamin D and tes-
tosterone is supported by evidence from human trials,91 
no anti-sarcopenic drugs have yet been approved. Next, 
we will explore how different sarcopenia management ap-
proaches affect skeletal muscle mitochondria (Figure 3).

3.1  |  Exercise

Physical activity increases ATP consumption by skeletal 
muscle cells to fuel contraction. The consequent drop of 
the myocellular energy charge triggers AMP-activated 
kinase (AMPK),92 a master regulator of cellular energy 
metabolism that helps adjust ATP supply to meet ATP 
demand.93 Moreover, physical activity acutely stimulates 
the production of ROS by skeletal muscle mitochondria94 
and thus causes mild endogenous oxidative stress that 
activates AMPK further.95,96 Exercise protects against 

F I G U R E  2   Demand-driven energy metabolism in skeletal muscle. Cellular energy metabolism may be viewed from a top-down 
perspective as the interaction between processes that supply ATP by substrate-level and oxidative phosphorylation, and processes that 
demand ATP. In healthy skeletal muscle, total ATP flux is largely controlled by energy expenditure, which is increased by physical activity. 
Nutrients are catabolic fuels for ATP synthesis and stimuli for anabolic ATP-consuming processes, such as protein synthesis. Created with 
BioRe​nder.​com.
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oxidative stress in the longer term, however, because 
skeletal muscle cells upregulate expression of antioxi-
dant defense systems in response to the acute increase in 
ROS.97 This mitohormetic response98 likely contributes to 
the benefits of physical activity for mitochondrial activ-
ity in aged skeletal muscle. Long-term positive effects of 
exercise include a boosted oxidative capacity,99 with evi-
dence for increased ATP synthesis capacity in vivo100–102 
and for an increased activity of mitochondrial respiratory 
complexes ex vivo.103–107 Related to this oxidative benefit, 
exercise increases mitochondrial biogenesis108 and mi-
tochondrial mass,106 and improves mitochondrial qual-
ity control40 through effects on structural dynamics and 
autophagy.104,109–111

With ROS as important culprit of the mitochondrial 
defects in sarcopenic muscle (Figure 1), it is perhaps not 
surprising that exercise should rescue such defects, since 
it strengthens the cells' antioxidant defense. Interestingly, 
however, exercise-induced increases in muscle mass and 
function do not always involve increased oxidative ca-
pacity, as the nature of mitochondrial effects appears to 
depend on the type of exercise.42 Both endurance and re-
sistance training increase skeletal muscle quality in sar-
copenia, but while the benefit of endurance exercise is 
consistently linked with clear stimulation of mitochon-
drial biogenesis and increased oxidative capacity,112–116 
mitochondrial effects of resistance exercise are less 
clear.113,117–120 Resistance training does not affect mito-
chondrial biogenesis or mitochondrial content but does 
indeed alter intrinsic mitochondrial function.121,122 For 
instance, resistance exercise changes the mitochondrial 
transcriptome123 and increases specific abundance of mi-
tochondrial respiratory complexes,124 which is consistent 
with the observation that resistance exercise increases 

ATP synthesis capacity without changing mitochondrial 
content,112,125 and may indicate increased coupling effi-
ciency of oxidative phosphorylation.42

AMPK is activated during exercise by a decreased 
ATP/AMP ratio92 and by increased ROS levels.95,96 
Skeletal muscle fibers demand much ATP during both 
endurance and resistance exercise126 and increase their 
production of ROS in acute response to both types of 
physical activity.127 The different mitochondrial effects 
of endurance and resistance training are thus unlikely 
related to these cellular signals per se but are more 
likely owing to differential fiber type recruitment during 
different types of exercise.42 Resistance exercise draws 
predominantly on fast-twitch type 2 fibers, which obtain 
more of their ATP from glycolysis than their slow-twitch 
type 1 counterparts.128 The type of exercise thus seems 
to dictate which skeletal muscle fiber type accounts 
most for the increased muscle mass and function pro-
voked by physical activity. Endurance training induces 
the formation of type 1 fibers, which is reflected by in-
creased mitochondrial mass, while resistance training 
does not increase mitochondrial mass in newly formed 
type 2 fibers but improves mitochondrial ATP synthesis 
efficiency. Notably, resistance exercise amplifies the rise 
in mitochondrial oxidative capacity of sarcopenic skele-
tal muscle established by endurance exercise.129,130 The 
ability of aged muscle to increase mitochondrial mass 
in response to endurance exercise131 indicates that the 
mechanisms that regulate mitochondrial functional 
capacity remain intact in elderly individuals. Whether 
or not this is also the case for the secondary sarcopenia 
that develops in disease is less clear. For example, while 
the transcript level of peroxisome proliferator-activated 
receptor-γ coactivator-1α is increased in non-dialysed 

F I G U R E  3   Effects of anti-
sarcopenic interventions on skeletal 
muscle mitochondria. Exercise improves 
mitochondrial quality control and 
increases both the capacity and efficiency 
of oxidative phosphorylation, at least 
partly, through attenuation of oxidative 
stress. Some nutrient supplements contain 
antioxidants, while branched-chain amino 
acids, leucine, in particular, may improve 
proteostasis through energy-demanding 
anabolic stimulation. Mitochondria have 
been suggested as therapeutic targets. 
Created with BioRe​nder.​com.
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individuals with chronic kidney disease following 
12 weeks of aerobic physical activity, mitochondrial 
mass appears unaffected.132

3.2  |  Nutrition

Appropriate nutrition is an essential aspect of current sar-
copenia management.17 Many dietary supplements have 
been explored, including both macro- and micronutrients 
such as protein,133 unsaturated lipids134 and vitamins,135 
as well as a range of polyphenols from natural sources,136 
but it should be emphasized that nutritional support is 
generally only effective in combination with exercise.2,14,90 
Benefit from polyphenols, vitamin D and polyunsaturated 
fatty acids may be related to the antioxidant properties of 
these nutrients,137–139 but it is unclear to what extent their 
use as dietary supplements actually affects mitochon-
drial ROS production in sarcopenic muscle (Figure  3). 
The bioenergetic relation between dietary protein and 
mitochondrial activity is dual, since amino acids, specifi-
cally, leucine, are oxidative metabolic fuels,140 allowing 
ATP synthesis when broken down through oxidative ca-
tabolism, as well as anabolic stimulants of protein synthe-
sis,69,141 provoking ATP consumption142 (Figure 2).

Protein supplementation remains at the forefront of the 
nutritional management of primary and secondary sarco-
penia, which is unsurprising as perturbed proteostasis is a 
key feature of this muscle disorder.25,143 With age, muscle 
protein synthesis loses its sensitivity to anabolic stimuli 
such as essential dietary amino acids,69 and, together with 
lost insulin inhibition of protein breakdown,144 this ana-
bolic resistance perturbs proteostasis.69,141,145–147 Dietary 
protein supplements seek to overcome anabolic resistance 
but have limited benefit per se, as they appear most benefi-
cial when administered together with exercise.148 This ob-
servation suggests that both catabolic and anabolic stimuli 
are required to restore skeletal muscle mass and function 
in sarcopenia. Branched-chain amino acids—leucine in 
particular—have been recognized to add ‘biological value’ 
to essential amino acid and protein supplements,149 as 
they appear able to stimulate both anabolic and catabolic 
processes.150–153

In healthy skeletal muscle, leucine acutely increases 
protein synthesis in the postprandial state through mTOR 
activation by various signals, including acetyl CoA, leucyl-
tRNA and sestrin.154 Perhaps to meet energy demand 
from this anabolic stimulation,155 it is suggested by rodent 
pre-clinical studies that leucine also triggers an adaptive 
catabolic response that involves AMPK and that increases 
skeletal muscle mitochondrial biogenesis, mtDNA con-
tent, fatty acid oxidation and glucose uptake.156 The ap-
parently parallel occurrence of catabolic and anabolic 

stimulation is complex,124,156 and indeed paradoxical, as 
AMPK is a well-established mTORC1 de-activator.150,151 
Leucine-induced catabolic and anabolic responses are 
thus likely separated temporally and spatially, through in-
volvement of different fiber types.157

Protein contributes 10%–15% to total fuel oxidation in 
the postabsorptive state in resting skeletal muscle,158 and 
catabolism of branched-chain amino acids accounts for 
about two-thirds of this contribution.158 Insulin inhibition 
of protein breakdown is lost in sarcopenic muscle, which 
likely increases branched-chain-amino-acid-driven oxida-
tive catabolism in older individuals.159 The systemic oxida-
tion of branched-chain amino acids occurs predominantly 
in skeletal muscle mitochondria158,160 and oxidation rate 
is sensitive to nutrition-related changes in intramuscular 
branched-chain amino acid concentration.160 The oxida-
tion rate of branched-chain amino acids in elderly individ-
uals is also increased by endurance161–163 and resistance 
exercise,164,165 as is the anabolic response to leucine, again 
suggesting that both anabolic and catabolic stimuli are 
necessary to obtain maximum benefit from nutrition in 
sarcopenia.

The notion that protein supplementation is most effec-
tive for management of sarcopenia when combined with 
physical activity,148 suggests that bioenergetic processes 
triggered by energy demand may need to be active to 
obtain full benefit from anabolic stimuli. Supplemented 
amino acids may indeed only be usable as catabolic carbon 
fuel for ATP synthesis if demand for ATP is stimulated, 
for example, by exercise. It is worth emphasizing that in-
creased intake of macronutrients without increasing en-
ergy expenditure may do more harm than good, as such 
intake is expected to create an overly reduced cellular en-
vironment that promotes ROS generation. Notably in this 
respect, obesity-related skeletal muscle insulin resistance 
arises at least in part because of imbalanced bioenergetics 
that increase ROS to pathological levels.49 Moreover, loss 
of skeletal muscle insulin sensitivity is an early feature of 
uremic sarcopenia.166 Nutrients with strong antioxidant 
properties may protect against excessively high ROS lev-
els but may inadvertently attenuate any adaptive hormetic 
benefit from exercise that depends on an acute increase in 
ROS production.167

3.3  |  Pharmacological intervention

Anti-sarcopenic drugs have not been approved to 
date,2,14,168 as there is insufficient support from human 
trials to justify pharmacological interventions in clini-
cal practice other than vitamin D in elderly women and 
testosterone in elderly men.91 Vitamin D is thus an ex-
ample of ‘Foods for Special Medical Purposes’ and, like 
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other nutrients discussed above, is sometimes referred 
to as a nutraceutical.169 Despite lack of clinical trial evi-
dence, numerous pharmacological approaches have been 
suggested. Drugs that have been investigated include tes-
tosterone, testosterone derivatives (melatonin), and selec-
tive androgen receptor modulators or SARMS,170 which 
not only increase the number of skeletal muscle satellite 
cells,171 but all also have beneficial effects on muscle fib-
ers per se.172,173 Inhibitory antibodies against proinflam-
matory cytokines174 and myostatin inhibitors175 are other 
examples of drugs that have been explored. Therapeutics 
that have been linked explicitly to mitochondrial function 
include growth hormone replacement,176 which increases 
mitochondrial oxidative capacity, improves proteostasis, 
and has anti-sarcopenic benefit for elderly people,177 ghre-
lin and ghrelin receptor agonists, which increase oxidative 
capacity in sarcopenia linked to chronic disease,178–180 and 
5-aminolevulinic acid, which improves muscle quality in 
mice while increasing mitochondrial content.181

The noticeable lack of drug approval is likely related 
to a limited number of randomized clinical trials, which 
are generally hampered by the range of sarcopenia defi-
nitions and by the difficulty of identifying primary end-
points.168 Other therapeutic approaches are much sought 
after, and mitochondria have attracted much attention in 
this respect.182–184

Mitochondrial medicine is a rapidly developing 
field,182–184 and approaches for delivering mitochondria-
targeted drugs have been reviewed recently by oth-
ers.185,186 Exercise has been recognized as a ‘natural 
medicine’ for skeletal muscle mitochondria,187 but it may 
well become possible in the foreseeable future to improve 
the activity of these organelles in sarcopenic muscle with 
targeted drugs. Drugs that are passively or actively de-
livered to skeletal muscle mitochondria hold promise to 
preserve mitochondrial quality and functionality by low-
ering oxidative stress.188 Although in its infancy, several 
preclinical studies have offered proof-of-principle for this 
potential therapeutic approach. For instance, MitoQ and 
MitoTEMPOL, which are a mitochondria-targeted anti-
oxidant and superoxide dismutase mimetic, respectively, 
have been shown to improve muscle strength and mass 
by altering bioenergetics in several disease mouse mod-
els,189–191 while the mitochondria-targeted Szeto-Schiller 
peptide SS31 has been reported to increase exercise toler-
ance in aged mice.192

Mitochondrial transplantation is a therapeutic ap-
proach with much potential, but also very much in its 
infancy. The introduction of healthy mitochondria to dys-
functional cells or tissues has been trialed to increase oxi-
dative capacity in various disease contexts,193 while work 
with cell and animal models suggests the approach may 
help combat muscle atrophy.194–197

4   |   CONCLUDING REMARKS

Imbalanced protein synthesis and breakdown in skeletal 
muscle accounts for muscle atrophy associated with old age 
and disease.25,143 Decreased oxidative capacity is a central 
feature of both primary and secondary sarcopenia,19,74–78 
but the causal interrelation between altered bioenergetics 
and perturbed proteostasis remains unclear (Figure 2). It 
appears that mitochondrial bioenergetic changes in sarco-
penia are broadly interpreted as an intrinsic dysfunction 
that renders skeletal muscle cells incapable of producing 
sufficient ATP to sustain protein synthesis. The general 
benefit of exercise for skeletal muscle mass and function in 
elderly and diseased individuals, however, demonstrates 
that this apparent insufficiency is readily overcome when 
energy expenditure is increased. This observation indi-
cates that sarcopenic muscle has retained mechanisms to 
produce ATP when needed, and it suggests that the de-
creased oxidative capacity may be an adaptation to patho-
logically dampened energy demand. It is thus conceivable 
that impaired protein synthesis is one of the causes of 
lowered mitochondrial ATP synthesis in sarcopenic mus-
cle, because this defect contributes to decreased total ATP 
consumption. Anabolic and insulin resistance that is re-
sponsible for the compromised balance between protein 
synthesis and breakdown is likely related to the inflamma-
tion and oxidative stress that typify sarcopenic conditions. 
The bioenergetic imbalance between nutrient supply and 
energy expenditure promotes oxidative stress, which may 
exacerbate mitochondrial and cellular defects. The obser-
vation that nutrition is only effective as an anti-sarcopenic 
intervention when applied with exercise, is consistent 
with this order of events. We emphasize that dietary sup-
plements without increased physical activity may do more 
harm than good if compromised energy expenditure were 
at the root of muscle dysfunction, as they would distort 
the bioenergetic balance further and increase the risk of 
high ROS production. Notably, therapies based on mito-
chondrial transplantation would also be inconsequential if 
the bioenergetic changes seen in sarcopenia were second-
ary to pathologically diminished energy expenditure, i.e., 
if the oxidative capacity was increased without the need 
for such capacity. In conclusion, to achieve positive clini-
cal outcomes it will be very important to obtain a more 
precise understanding of the causal interrelations between 
proteostasis, cellular bioenergetics and redox biology in 
both healthy and sarcopenic skeletal muscle.
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