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Text S1 Mathematical model 

Structure of double layer-averaged model 

Fig. S1 presents the general structure of subaqueous sediment-laden flow, which comprises: (i) 

an upper clear-water flow layer, (ii) a lower sediment-laden flow layer (i.e., turbidity current), 

and (iii) an erodible bed with vanishing velocity. Interactions occur at the interfaces between 

the upper layer clear water flow, sediment-laden flow and erodible bed. The upper layer 

interacts with the lower sediment-laden flow layer by exchanging clear water, whereas the 

lower sediment-laden flow layer exchanges both water and sediment with the erodible bed. 

 

 

Fig. S1. Sketch of subaqueous sediment-laden flow. 

 

Governing equations 

For the lower sediment-laden flow layer, application of the mass and momentum conservation 

laws leads to continuity and momentum equations, which are written in Cartesian tensor 

notation as follows: 
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where t  is time; ( )1, 2, 3ix i =  are horizontal and vertical Cartesian coordinates; 

( )1c w s s sc c  = − +  is the density of the water-sediment mixture in the sediment-laden flow 

layer; 
s  is sediment density; 

w  is water density; 
sc  is volumetric sediment concentration; 

siu  is the i-th component of sediment-laden flow velocity; rp  is pressure within the 

sediment-laden flow layer; ij  relates to the mixture stress tensor; and iF  is the i-th 

component of the resultant mass force.  

Assuming that gravity is the only mass force, then 0x yF F= =  and z cF g= − . We also 

neglect the horizontal components of normal stress ,xx yy   and shear stress ,xy yx  . The 2D 

continuity and momentum equations (S1.1) and (S1.2) for the sediment-laden flow then 

become: 
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where ( )1x x=  and ( )2y x=  are the horizontal Cartesian coordinates; ( )3z x=  is the vertical 

Cartesian coordinate above a fixed datum; and ,sx syu u  are the horizontal velocity components. 

The depth-averaged quantity ( ),s sU V =  of a two-dimensional variable 

( ),sx syu u =  is defined by 
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where sh  is the thickness of the lower sediment-laden flow layer; bz  is the bed elevation; 

and s s bh z = +  is the elevation of the interface between the clear-water layer and 

sediment-laden flow layer. 

Before deriving the depth-integrated model, it is necessary to introduce boundary 

conditions at the interface and channel bed. Noting that the channel bed usually varies at a 

much lower rate than the flow, the following non-slip condition is applied at the bed 

boundary: 
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The interface between the lower sediment-laden flow layer and the upper clear-water 

flow layer is a moving boundary, and so 
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where wE  is the velocity of water entrainment across the interface between the two layers. 

Integrating the continuity equation (S.1.3) according to (S1.5) and substituting in the 

boundary conditions (S1.6) and (S1.7) leads to the following depth-integrated 2D continuity 

equation for the sediment-laden flow layer: 
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where sU  and sV  are the sediment-laden flow layer-averaged velocity components in the x- 
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and y-directions; p  is the bed sediment porosity; and 0 (1 )w sp p  = + −  is the density of 

the saturated bed. 

Inertial and diffusion effects in the vertical momentum equations are neglected, and 

hence the flow pressure rp  is assumed hydrostatic such that, 
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where wh  is the thickness of upper clear-water flow layer. 

Integrating the x-momentum equation (S1.4a) over the flow depth and then applying the 

Leibniz integral rule to this equation yields 
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Substituting (S1.6), (S1.7) and (S1.9) into Eq. (S1.10) yields the following 

depth-integrated x-momentum equation for the sediment-laden flow layer: 
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Similarly, integrating Eq. (S1.4b) over the flow depth leads to the following 

depth-integrated y-momentum equation for the sediment-laden flow layer: 
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where wU  and wV  are the clear-water flow layer-averaged velocity components in the x- 

and y-directions; ,wx wy   are shear stresses at the interface between the clear-water flow layer 

and the sediment-laden flow layer; ( )eff B B N N    = − +  is the effective shear stress, in 

which B  is the shear stress due to non-Newtonian rheology, N  is the shear stress due to 

Newtonian rheology, and B  and N  help control the Newtonian or non-Newtonian behavior 

as the sediment concentration varies.  
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Text S2 Model validation- subaerial mud flow 

A series of experiments were conducted at the University of California by V. G. Wright and R. 

B. Krone to investigate mud and debris flow rheological properties (Wright, 1987; and Wright 

and Krone, 1987). The present EDL model is tested against one of the experiments (Run 15) 

involving relatively high sediment concentration, in which the subaerial mud flow acts as a 

non-Newtonian fluid. The experiments were conducted in a rectangular glass flume, 7.3 m long 

and 0.6 m wide, with a bottom slope of 0.06. A reservoir of length 1.8 m was located upstream 

of the flume, and a vertical sliding gate placed at the downstream end of the reservoir, as shown 

in Fig. S1.  

 

 

Fig. S2. Experimental setup for subaerial mud flow tests undertaken by Wright (1987) and 

Wright and Krone (1987). 

 

Initial conditions of the subaerial mud flow are: height 0 0.3 msh = ; length 1.8 mL = ; 

and density 
3

0 =1073 kg mc . Wright (1987) and Wright and Krone (1987) used the 

following empirical expresstions to approximate the observed rheological behaviour, in terms 

of yield stress, 
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and viscous stress,  

 
( )
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where   denotes shear rate. The suspended material comprised bentonite with specific 

gravity of 2.65 and mean particle diameter of 44 μm. In the numerical model, the grid size is 

set to 0.02 m in both longitudinal and lateral directions.  

To test the performance of our EDL model, we first compare the model predictions 

against an analytical solution for non-Newtonian fluid proposed by Huang and Garcia (1997), 

alternative numerical predictions by Imran et al. (Imran and Parker et al., 2001), and 

computational results using the previous ODL model (Cao and Li et al., 2015). In the ODL 

model, the bed roughness Manning coefficient bn  is set to 1 30.03m s−  in order to provide a 

best fit to the experimental data. Fig. S3 shows that the Newtonian ODL model simulates a 

much longer runout than the three non-Newtonian models. This is to be expected because 

when non-Newtonian rheology is neglected, the boundary shear stress is not estimated 

properly, and so the subaerial flow thickness is incorrectly estimated. Compared against the 

experimental data, the three non-Newtonian models perform relatively better than the 

Newtonian model in estimating runout distance and thickness of the mud flow at 4.1st =  

(Fig. S3). However, pronounced differences are evident in the profiles predicted by the three 

non-Newtonian models, with the best agreement between measured and predicted results 

obtained using the EDL model (where the coefficient of determination is 
2
EDLR 0.8159= ). 
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Fig. S3. Comparison between experimental and numerical thickness sh  profiles of subaerial 

mud flow in a rectangular channel.  Experimental data from Wright (1987) and Wright and 

Krone (1987). 
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Figures S4-S6 

 

 

Fig. S4. Numerical domain and initial condition for subaqueous debris flow originally 

considered by Imran et al. (2001), where H  denotes initial water depth, L  is initial length 

of debris flow, 0sh  is maximum initial thickness of debris flow. 

 

 

 

Fig. S5. Subaqueous debris flow profiles predicted by EDL model for different initial water 

depths H  at times: (a) 2mint = ; and (b) 22mint = . 
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Fig. S6. Plan geometry of reservoir turbidity current experiments by Wang et al. (2020). 
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Fig. S7 Case E1 with tributary discharge 1.98 L stQ = . (a) Comparison between measured 

and computed ranges of interface elevation s  at each cross-section. (b) ODL model and (c) 

EDL model predictions, and experimental measurements (Wang et al., 2020) of front 

elevation and interface elevation profiles along the central axes of the main channel (MC) and 

tributary (TR) at four time instants. Abbreviations UMC and DMC refer to upstream and 

downstream reaches of the main channel. 
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Fig. S8. Guxian reservoir study: velocity of turbidity currents at times t = 12 h and 72 h, 

predicted using (a1, b1) EDL model and (a2, b2) ODL model. 
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Fig. S9. Guxian reservoir model: distributions of volumetric sediment concentration sc  at 

times t = 12 h, 24 h, 48 h, and 72 h computed using (a1-d1) EDL model and (a2-d2) ODL 

model. 


