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Black-odorous water bodies annual dynamics in the context of climate 1 

change adaptation in Guangzhou City, China  2 

Abstract: Black-odorous water (BOW) in urban areas has brought detrimental ecological effects 3 

and posed a threat to the health of surrounding residents. Identifying BOWs in urban areas is 4 

difficult because they are usually small in area, and discontinuous in spatial distribution. The efforts 5 

to adapt to climate change in cities have a direct connection to urban environment and may affect 6 

the dynamics of BOWs, but their relationship has seldom been addressed in previous research. This 7 

research builds a new urban BOW detection model using Gaofen (GF) images and ground-level in-8 

situ water quality data to detect the spatiotemporal dynamics of BOWs in Guangzhou City's main 9 

urban area from 2016 to 2020, when comprehensive climate adaptation strategy has been 10 

implemented as a pilot metropolitan area in China. Spatial analysis in the study area with a total of 11 

97 focused rivers revealed a decreasing trend in BOW occurrence (from 85.57% in 2016 to 21.65% 12 

in 2020) in the context of climate change adaptation efforts. Redundancy analysis between BOWs 13 

occurrence and environmental factors showed that across the entire study area, the contributions of 14 

anthropogenic factors (highest proportion at 14.3% for the area percentage of built-ups) to BOW, 15 

such as population density, agricultural water use, domestic water use, and so on, distinctly stronger 16 

than climatic drivers (largest contribution of 4.4% for temperature). The results suggested that 17 

climate change adaptation efforts help to decrease BOW occurrence in the study area, while 18 

exploring the response mechanism between climate change adaptation measures and the changes of 19 

BOWs be necessary in the future research. The findings were conducive to the development of 20 

targeted measures to decrease the occurrence of urban BOWs while improving adaptability of the 21 

city to climate change.   22 

Keywords: black-odorous water, detection model, GF images, climate change adaptation, 23 

spatiotemporal trends, Guangzhou 24 

1. Introduction 25 

Black-odorous water (BOW) is a typical urban water environment problem, and it has brought 26 

detrimental ecological effects and posed a threat to the health of surrounding residents. Urban BOW 27 



2 

 

occurs worldwide both in developed and developing countries (Wang et al., 2019a), such as the 28 

United States(Barnes et al., 2014), Australia (Hladyz et al., 2011), India(Rixen et al., 2010) and 29 

China(He et al., 2018). As the water environment suffers from organic pollution that exceeds its 30 

self-purification capacity, the aerobic decomposition of organic matter causes oxygen 31 

deprivation(Cao et al., 2020), generating odoriferous and black substances(Li et al., 2020a; Norgbey 32 

et al., 2021).  33 

Global climate change is one of the most significant challenges facing humanity, leading to 34 

temperature increase and extreme weather events (Hersbach et al., 2020; Sonali and Kumar, 2020). 35 

Given the complex structure, high population density, and intense human activities, cities were 36 

particularly affected by climate change(Estrada et al., 2017). Accordingly, some large cities had 37 

incorporated climate change into their long-term development strategies and made efforts to 38 

improve their adaptivity to climate change (Malhi et al., 2020). There is a growing recognition that 39 

water is central to climate change adaptation. Among the contributions identified by 79% of 40 

countries, water is a top adaptation priority(Robiou du Pont et al., 2017).   41 

Climate change increases the complexity and uncertainty of the formation of BOW, because 42 

changes in precipitation and temperature can affect water quality by altering dilution and transport 43 

processes and by affecting the degradation of river pollutants(Bartlett and Dedekorkut-Howes, 2022; 44 

Santy et al., 2020). On the other hand, climate change adaptation measures such as improving and 45 

rehabilitating urban drainage networks, improving the capacity to optimize water allocation, and 46 

enhancing urban ecological restoration (Babaeian et al., 2021; Biswas et al., 2022) have been 47 

individually proven to have an impact on the occurrence and severity of BOWs. Poor water resource 48 

management exacerbated the impact of climate change on BOW(Cherkauer et al., 2021). BOW 49 

bodies were also closely related to urban drainage systems when precipitation occurs(Xu et al., 50 

2019b). In China, urban stormwater drainage systems may not be able to withstand sudden rainfall 51 

events, resulting in low wastewater collection rates(Xu and Xu, 2022). Moreover, the separation of 52 

stormwater and wastewater drainage systems may lead to contamination of water bodies by initial 53 

rainfall(Liao et al., 2016; Xu et al., 2021c), which improved the complexity of spatiotemporal 54 

changes of BOWs. In addition, anthropogenic and natural factors increased risks of the rebound in 55 

BOW presence in urban areas(Wang et al., 2022). So far, climate change adaptation in urban areas 56 
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currently focuses on the planning and implementation of actions. There are limited studies to assess 57 

whether multifaceted climate change adaptation measures have been successful in reducing the 58 

BOW spatiotemporal dynamics in urban areas (Berrang-Ford et al., 2021).  59 

Accurately identifying BOW distribution is prerequisite to analyze the impacts of climate 60 

change adaptation to BOW dynamics. Identifying BOWs in urban areas is difficult because they are 61 

usually small in area, and discontinuous in spatial distribution. For small urban rivers, images with 62 

less than 5 m spatial resolution are generally needed to monitor their water quality(Wen et al., 2018). 63 

The development of high spatial resolution satellite data, such as the GF2 satellite, facilitated time-64 

series analysis aiming at spatiotemporal trends(Fang et al., 2022) of BOW. There are unique spectral 65 

characteristics of BOW that distinguish it from normal water bodies(Miao et al., 2021; Yu et al., 66 

2022). Many studies adopted spectral band combinations as input and classified the BOW model 67 

results into different levels by selecting thresholds for empirical models of BOW identification(Li 68 

et al., 2019a; Qi et al., 2020). The Commission Internationale de L'Eclairage(CIE) method(Shen et 69 

al., 2019) or the nutrient status index based on chlorophyll-a(Chla) or total suspended solids(TSS) 70 

were also constructed to identify BOWs. In addition, machine learning methods have been applied 71 

to BOW identification(Sarigai et al., 2020; Zhou et al., 2022) but are limited because of inadequate 72 

samples. The accuracy of the model to identify the distribution of BOW over the years and the 73 

possibility of differences in the dominant factors of regions with different characteristics need to be 74 

taken into consideration. In recent years, with the enhancement of BOW management, there have 75 

been obvious changes of BOW bodies in many cities(Cao et al., 2020), while most BOW models 76 

lack applicability to different types of regional and interannual variability(Yu et al., 2022).  77 

Due to its advantages of periodicity and repeatability, remote sensing data has proved to be 78 

cost-effective in monitoring water environment changes, and current studies were mainly carried 79 

out in inland lakes(Hu et al., 2022) and coastal areas(Zhu et al., 2022), among which the mostly 80 

investigated parameters include Chla(Cao et al., 2022; Chen et al., 2022) or algal bloom(Fang et al., 81 

2022), TSS (Du et al., 2022a), Secchi Disk depth(SD) or transparency (Somasundaram et al., 2021; 82 

Song et al., 2022; Zhao et al., 2021), etc. However, there have been few studies on the spatial-83 

temporal changes of small BOW bodies in urban areas (Zhou et al., 2022), especially in the context 84 

of climate change adaptation.  85 
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With Guangzhou, China, selected as the study area, where a range of climate change adaptation 86 

measures has been implemented, the present study aims: 1) to develop an efficient and convenient 87 

BOW detection model for urban areas with high-resolution remote sensing images; 2) to explore 88 

annual spatial-temporal variations of BOWs from 2016 to 2020 in the context of climate change 89 

adaptation; and 3) to quantify the contribution of climate change and human activities related to 90 

climate change adaptation upon BOW bodies annual dynamics. The results will provide valuable 91 

insights for implementing climate change adaptation while eliminating BOWs in urban areas. 92 

The rest of the paper is structured as follows: Section 2 describes the study area and its climate 93 

change adaptation measures, research framework, satellite image processing, the new BOW model, 94 

BOW driver selection, and analysis methods. Model validation of the BOW model, spatiotemporal 95 

variations of BOWs from 2016-2020, contributions of climate change and anthropogenic drivers 96 

are presented in Section 3. Section 4 examines the applicability of the BIR model, BOWs variation 97 

in the context of climate change adaption, limitations of the present study, and policy implications. 98 

Finally, the conclusion was provided in Section 5. 99 

2. Data and Methods  100 

2.1. Study area and its climate change adaptation measures 101 

Guangzhou, the capital city of Guangdong Province, is a highly developed urban center(Yi et al., 102 

2019) characterized by a dense river network and a plain landscape. This study focuses on the main 103 

urban area of Guangzhou, China (Fig. 1) which was obtained based on the global impervious surface 104 

data (GAIA) (Li et al., 2020b). The total area of the study area covers 1,110 km2. A large number of 105 

rivers in Haizhu District are sensitive to tides and dissolved oxygen (DO) content fluctuates day and 106 

night. Despite the rapid economic growth, the study area faces severe water pollution issues due to 107 

the increasing amount of sewage discharge and relatively inadequate urban environmental 108 

infrastructure, and uncertainty of precipitation caused by climate change (Xu et al., 2019a). In 2015, 109 

138 BOW bodies were included in the key regulatory list of Guangzhou(Cao et al., 2020), the largest 110 

number among cities in China, and later expanded to 197 in 2018. Although these BOW bodies were 111 

declared to have been eliminated in 2020, some areas still suffer from the rebound phenomenon of 112 
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BOW for the lack of source control treatment(Ministry of Housing and Urban-Rural Development 113 

of the People’s Republic of China, 2021).  114 

Guangdong Province's climate has undergone significant changes in the context of global 115 

warming. Since 1961, the average temperature in the province has increased by 0.19°C per decade, 116 

which is higher than the global average (0.15°C per decade) (People's Government of Guangdong 117 

Province, 2011). Annual precipitation and total water resources show a small cycle of abundance 118 

and deficit around the normal level in the province; however, the variability of precipitation has 119 

increased, leading to more extreme precipitation events (Wai et al., 2017).  120 

In 2017, Guangdong Province issued the "Guangdong 13th Five-Year Plan for Climate Change 121 

Adaptation" proposing a series of measures to enhance the province's ability to adapt to climate 122 

change. Among them, the ecological environment measures play a significant role in influencing 123 

BOW. To optimize and rationalize the use of water resources, replacing old urban water supply 124 

pipelines and promoting the utilization of rainwater were adopted. For strengthening water pollution 125 

control and water ecological protection, the plan proposes strengthening the treatment of urban 126 

domestic sewage, improving sewage pipelines and treatment facilities, controlling agricultural non-127 

point source pollution, and purifying agricultural drainage and surface runoff (Development and 128 

Reform Commission of Guangdong Province, 2017). And now Guangdong Province is developing 129 

a comprehensive climate adaptation strategy addressing both urban planning and industrial 130 

structural readjustment to reduce the reliance on fossil fuel consumption in economic development, 131 

while improving regional resilience to water-related disasters. Measures such as optimizing water 132 

management, promoting sponge cities, and improving the efficiency of wastewater treatment plants 133 

were proposed in the city's 14th five-year plan (Development and Reform Commission of 134 

Guangdong Province, 2022).  135 
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 136 

Fig. 1 The study area of Guangzhou City. 137 

2.2. Research framework 138 

The research framework is illustrated in Fig. 2. A new BOW model was established in section 2.5 139 

and validated in section 3.1. Spatial distribution and temporal variations of BOW from 2016 to 2020 140 

were shown and counted in section 3.2. The effects of climate change and human activities on BOW 141 

were displayed by analyzing the correlation and contributions of BOW drivers with the redundancy 142 

analysis (RDA) method in sections 3.3 and 3.4. Further interpretation of BOW variations and policy 143 

implications with climate change adaptation were discussed in section 4.  144 

 145 

Fig. 2 Research framework. 146 
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2.3. In-situ water quality data 147 

Water quality data of key rivers in Guangzhou were collected in two ways: 1) automatic monitoring 148 

stations; 2) historical water quality data obtained by manual sampling monthly from 2016 to 2020, 149 

published by the Guangzhou Municipal Ecological Environment Bureau 150 

(http://112.94.69.56:8022/index.html#/gzhbapp-riverWaterQuality-pc). The data contain three 151 

indicators, namely ammonia nitrogen (NH3N), DO, and SD (only for 2016). The data were collected 152 

from 36, 56, 60, 61, and 62 sampling points from 2016 to 2020, respectively, and some data were 153 

missing in some years. Specially, the time gap between the data collected from the automatic 154 

monitoring stations and the satellite image transit was 0.5 h. The study adopted the single indicator 155 

method from the BOW standard (Ministry of Housing and Urban-Rural Development of the 156 

People’s Republic of China, 2015), i.e. if one indicator exceeds the specified value, the sample is 157 

determined as a BOW(Miao et al., 2021). In the practical management in Guangzhou, NH3N is used 158 

as the primary criterion for BOW determination. In this study, NH3N and DO were used to classify 159 

BOW levels. If NH3N and DO of a sample exceed the standard values, it is sufficient to identify the 160 

sample as BOW. 161 

2.4. Satellite images and processing 162 

2.4.1. GF imagery selection 163 

20 scenes of GF-1 and GF-2 images from 2016 to 2020 were collected, and their details are provided 164 

in Table 1.  165 

Table 1. Satellite images used in this paper 166 

Type Imaging Time Scenes Spatial Resolution for GF images 

GF-1 2016-12-07 4 

GF-1 PMS 

Panchromatic 2m 

GF-2 2017-09-15 6 Multispectral 8m 

GF-1B 2018-10-07 2 

GF-1 B/D 

Panchromatic 2m 

GF-1D 2018-09-11 1 Multispectral < 8m 

GF-1 2019-09-28 2 

GF-2 PMS 

Panchromatic 0.8m 

GF-2 2020-11-26 5 Multispectral 3.2m 

http://112.94.69.56:8022/index.html#/gzhbapp-riverWaterQuality-pc


8 

 

China's GF-1 and GF-2 are high-resolution Earth observation satellites launched in 2013 and 2014, 167 

respectively. They capture images with high-spatial resolution and have multiple bands including 1 168 

panchromatic and 4 multispectral (Blue, Green, Red and Near-infrared) bands. GF images are 169 

currently suitable for urban water quality studies because of their sub-meter level of spatial 170 

resolution accuracy. 171 

2.4.2. Image preprocessing  172 

Five steps were applied before water extraction. First, the geometric correction was performed. 173 

Second, these images were radiometrically calibrated and atmospherically corrected using the 174 

FLAASH model in ENVI 5.3 software. Then the Gram-Schmidt Pan Sharpening method was 175 

utilized to fuse the panchromatic and multispectral bands to obtain higher spatial resolutions, and 176 

the infused spatial resolutions of GF-1 and GF-2 images were 2 m and 1 m respectively. Four, the 177 

image mosaic is necessary to provide image information for an entire study area. Finally, mosaiced 178 

images were clipped using boundary shape files of the study area to facilitate water surface 179 

extraction and the BOW model calculation. 180 

Water extraction is an essential part. Shadows from the densely packed tall buildings and 181 

asphalt streets in Guangzhou contaminated the images, making it difficult to extract small water 182 

bodies from images (Bie et al., 2020). To attenuate the interference of roads and shadows on water 183 

body classification, the four bands of the GF images were combined with the normalized difference 184 

water index (NDWI), and then classified with maximum likelihood classifier. The overall accuracies 185 

and kappa coefficients of water body extraction were all above 87% and 0.87 (shown in Table S1), 186 

adequate for water quality parameters retrievals(Zhao et al., 2021). To ensure the reliability, water 187 

bodies less than 50m2 were not used in further analysis.  188 

2.5. BOW model and optimal thresholds  189 

A total of 88 image samples at corresponding in-situ sites were selected to construct a new BOW 190 

model, including 46 ordinary water samples and 42 BOW samples on September 15, 2017. 191 

Additionally, 18 in-situ water quality samples were selected based on automatic water quality 192 

monitoring stations. 51 image sampling points were located close to an automatic monitoring station, 193 

the bend of a river, in slow-flow zones, and near residential areas, for the water quality at these 194 
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points was nearly equivalent to that of the nearest automatic monitoring station.  195 

2.5.1. BOW identification model 196 

The image reflectance of BOW and ordinary water differs across several GF bands (Fig. S1). Aiming 197 

at amplifying the difference between BOW and ordinary water, the present study constructed an 198 

index, namely BOW by Image Reflectance (BIR), as shown in Eq. (1).  199 

𝐵𝐼𝑅 =
(NIR-R)/(λNIR−λR)

(G-R)/(λR−λG)
=  {

≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,     𝑂𝑟𝑑𝑖𝑛𝑎𝑟𝑦 𝑤𝑎𝑡𝑒𝑟
  > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,                 𝐵𝑂𝑊

(1)200 

where, B, G, R, and NIR represent remote sensing reflectance in the blue, green, red, and near-201 

infrared bands respectively. λG，λR，λNIR are central wavelengths of the green, red, and near-202 

infrared bands. For GF-2, λG = 555 nm, λR = 665 nm,  and λNIR = 821 nm.  For GF-1,  λG =203 

576 nm, λR = 680 nm, and λNIR = 810 𝑛𝑚.  204 

2.5.2. Optimal BOW threshold with automatic discrimination algorithm 205 

57 training samples were randomly selected from the total 88 samples and comprised 29 ordinary 206 

water samples and 28 BOW samples. The remaining 31 samples were testing samples, consisting 207 

of 17 ordinary water samples and 14 BOW samples. Using the training samples, the recognition 208 

accuracy 𝑇_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖 and the optimal threshold 𝑇𝑏𝑒𝑠𝑡 were calculated by Eq. (2). 209 

where 𝑖 = 1, … 57 refers to the i-th training sample; ∑ 𝐶𝑁𝑡𝑟𝑎𝑖𝑛 is the sum number of correctly 210 

recognized BOW and ordinary samples for a given threshold, and 𝑁𝑡𝑟𝑎𝑖𝑛 = 57. The best threshold 211 

corresponds to the BIR model value which achieves the highest value of 𝑇_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖.  212 

To enhance the recognition accuracy of BOW, it is necessary to calibrate the threshold value 213 

for each year of the BIR model. This can be achieved by applying the Automatic Threshold Selection 214 

of BOW (ATSB) algorithm in Eq.(2) using Matlab 2021a. Additionally, statistical characteristics 215 

and the Mann-Whitney U nonparametric test were used to determine if training and testing samples 216 

were randomly distributed(Cardew, 2003) with IBM SPSS Statistic 20. 217 

𝑇𝑏𝑒𝑠𝑡 = 𝑀𝑎𝑥(𝑇_𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑖) = 𝑀𝑎𝑥(
(∑ 𝐶𝑁𝑡𝑟𝑎𝑖𝑛)

𝑖

𝑁𝑡𝑟𝑎𝑖𝑛
) (2) 
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2.5.3. Model accuracy assessment 218 

To assess the accuracy of BOW models, overall recognition accuracy (RA) (Eq.3) and kappa 219 

coefficient (Eq.4-6) were calculated with test samples. 220 

𝑅𝐴 =
𝐶𝑁𝑡𝑒𝑠𝑡

𝑁𝑡𝑒𝑠𝑡
× 100% (3) 

where 𝐶𝑁𝑡𝑒𝑠𝑡  is the number of testing samples correctly recognized, including ordinary water 221 

(ORW) and BOW samples, and 𝑁𝑡𝑒𝑠𝑡 is the total number of testing samples. 222 

𝐾𝑎𝑝𝑝𝑎 =
𝑅𝐴 − 𝑃𝑒

1 − 𝑃𝑒
 (4) 

𝑃𝑒 =
𝐶𝑁𝑂𝑅𝑊 × 𝑁𝑂𝑅𝑊 + 𝐶𝑁𝐵𝑂𝑊 × 𝑁𝐵𝑂𝑊

𝑁𝑡𝑒𝑠𝑡
2  (5) 

𝑅𝐴𝑂𝑅𝑊 =
𝐶𝑁𝑂𝑅𝑊

𝑁𝑂𝑅
× 100% (6) 

𝑅𝐴𝐵𝑂𝑊 =
𝐶𝑁𝐵𝑂𝑊

𝑁𝐵𝑂𝑊
× 100% (7) 

Where RAOR and RABOW are recognition accuracies of ordinary water and BOW respectively. CNOR, 223 

and CNBOW are the numbers of correctly recognized ordinary water and BOW respectively, and NOR 224 

and NBOW are amounts of the test samples for ordinary water and BOW in the same order. 225 

2.6. BOW drivers affected by climate change adaptation 226 

To explore how environmental factors make changes in BOW bodies, potential BOW drivers that 227 

would be influenced by climate change and its adaptation and directly contribute to the formation 228 

and development of BOW should be selected in preference. Natural impacts are mainly from climate 229 

change(Xu et al., 2021b) and are normally represented by Temperature and Precipitation. 230 

Anthropogenic factors correspond to human activities and reflect the results of climate change 231 

efforts made in Guangzhou. These factors include two parts, namely urban expansion, water use 232 

and discharge. Urban expansion is often reflected in terms of built-up area and population density. 233 

Land use and land cover change(LUCC), especially in urban and industrial areas(Song et al., 2022), 234 

are the main drivers of water quality degradation(Bhat et al., 2021; Zhao et al., 2015). The 235 

impervious surface area has a significant effect on total phosphorus (TP), total nitrogen (TN), and 236 

DO(Li et al., 2019b; Wang et al., 2021). It is essential to analyze the impact of LUCC on water 237 
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quality in high-speed urbanized areas(Lin et al., 2021; Liu et al., 2022). Population density is often 238 

used as a driving factor in water quality for its direct correlation with human activities(Bhat et al., 239 

2021). Water use and discharge include water consumption and discharge. Insufficiently regulated 240 

discharge of wastewater is the primary contributor to water pollution(Jones et al., 2022). Industrial 241 

wastewater, domestic sewage, and fertilizer from human life and industrial process(Lin et al., 2021), 242 

flow into urban rivers and lakes through point and surface sources of pollution, leading to 243 

eutrophication and even blackening water bodies(Ren et al., 2018; Song et al., 2021).   244 

Data for potential natural and anthropogenic factors from 2016 to 2020 were collected (Table 245 

2). Population data was validated with satisfying accuracy by Guangzhou Statistical Yearbook. 246 

Built-ups represent the percentage of built-up area to the total area of a region, revealing the intensity 247 

of exposure to human activities(Zhao et al., 2022). Besides, the area percentage of BOW bodies to 248 

the total water surface (extracted from 2.4.3), called the BOW-area, can quantify the effect of these 249 

factors on BOW changes. Therefore, the BOW-area was adopted as a dependent variable, and the 250 

value of each factor was regarded as another independent variable to analyze their relationships. 251 

Table 2. The data source for the BOW factors 252 

Factor types Dataa) Unit 
Resolution 

Source Url 
Temporal Spatial 

Climatic 

change 

Pre 0.1mm monthly 1km the National 

Earth System 

Science Data 

Center 

http://www.geo

data.cn Tmp 0.1℃ monthly 1km 

Urban 

expansion 

Pop person/km2 annual 1km LandScan 
https://landscan

.ornl.gov/ 

Built-up area pixel annual 1m/2m 

LUCC from 

section 2.4.3 

in this paper 

- 

Water use 

and 

discharge 

Wastewater t/person annual - b) 
Guangzhou 

Water 

Resources 

Bulletin 

http://slt.gd.gov

.cn/szygb/ 

Agricultural 

water 
m3/person annual - 

Industrial water m3/person annual - 

Domestic water m3/person annual - 

a) Pre = precipitation; Tmp = temperature; Pop = population density; Wastewater = wastewater 253 

discharge; Agricultural water = agricultural water use; Industrial water = industrial water use; 254 

Domestic water = domestic water use; Built-up area = the area of built-ups. 255 

b) Not applicable.  256 

https://landscan.ornl.gov/
https://landscan.ornl.gov/
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BOW-area and Built-ups here are calculated with buffer zones as the calculation units. Bhat et 257 

al. (2021) found that the reach-scale (500 m wide section) explained slightly better (76%) variations 258 

in water quality than riparian (75%) and watershed (70%) scales. In areas with high anthropogenic 259 

impacts, such as rapidly urbanizing areas, circular buffers are crucial for conservation efforts(Song 260 

et al., 2020). Human activities and the presence of artificial river systems and ponds in Guangzhou 261 

make BOW bodies highly susceptible to changes. Consequently, using watersheds, normally 262 

retrieved by digital elevation model, as analysis units are impracticable. Instead, LUCC within 263 

buffers can have a more direct and effective impact on water bodies(Liu et al., 2021). Using ArcGIS 264 

10.4 software, the hydrological unit boundary was established by forming a circular buffer zone 265 

with a radius of 200m around the water quality monitoring station as the geographic center. 266 

2.7. Data analysis methods  267 

Here, spearman correlation analysis in Eq.(8) was adopted to determine the relationship 𝑟 between 268 

BOW-area and each environmental factor variable, both in the direction (positive or negative) and 269 

strength (2-tailed significance test)(Du et al., 2022b). The correlations between the BIR model and 270 

water quality parameters were also analyzed with the same method. 271 

𝑟 = 𝜌𝑅(𝑋),𝑅(𝑌) =
cov(R(X), R(Y))

𝜎𝑅(𝑋) 𝜎𝑅(Y)
 (8) 

where, 𝜌  denotes the usual Pearson correlation coefficient, but applied to the rank variables, 272 

cov(R(X), R(Y))  is the covariance of the rank variables, 𝜎𝑅(𝑋)  and  𝜎𝑅(Y)  are the standard 273 

deviations of the rank variables. 274 

To better explicate the influence of environmental drivers on BOW changes, RDA was 275 

conducted to calculate the relative contribution(Wang et al., 2019b) to explore how the environment 276 

affected the conditions of BOW bodies. The greatest advantage of RDA is that the contribution of 277 

each factor to the BOW-area can be maintained independently, effectively providing a statistical test 278 

for multiple explanatory variables(Cheng et al., 2018). RDA can be understood as a two-step 279 

process(Legendre and Legendre, 2012) in Eq.(9)-(10). 𝑅2
𝑌|𝑋  measures the strength of the 280 

canonical relationship between Y  and X  by Eq. (11); Adjusted 𝑅2  (𝑅2
𝑎 ) in Eq. (13) applies a 281 

correction of the 𝑅2 to take into account the number of explanatory variables.  282 
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Y𝑓𝑖𝑡 = X[X′X]−1X′Y (9) 

Z𝑓𝑖𝑡 = Y𝑓𝑖𝑡U (10) 

𝑅2
𝑌|𝑋 =

SS(Y𝑓𝑖𝑡)

SS(Y)
) (11) 

Z𝑟𝑒𝑠 = (Y − Y𝑓𝑖𝑡)U𝑟𝑒𝑠 (12) 

𝑅2
𝑎 = (1 − (1 − 𝑅2

Y|X)
(𝑛 − 1)

(𝑛 − 𝑚 − 1)
) (13) 

where, X is an explanatory matrix for explanatory variables, and Y is a response matrix. The first 283 

step in Eq. (9) regresses each variable in Y on all variables in X and computes the fitted values 284 

Y𝑓𝑖𝑡. Then the second step in Eq. (10) carries out a PCA of the matrix of fitted values to obtain the 285 

matrix of eigenvectors, namely U and U𝑟𝑒𝑠. The space of explanatory variables X is obtained as 286 

Z𝑓𝑖𝑡. In Eq. (11), SS(Y𝑓𝑖𝑡) is the total sum of squares of Y𝑓𝑖𝑡, and SS(Y) is the total sum of squares 287 

of Y. Another PCA ordination, Z𝑟𝑒𝑠, can be computed in Eq. (12) for the matrix of residuals. In Eq. 288 

(13), 𝑚 is the number of explanatory variables in X.  289 

Combining the characteristics of administrative districts and watersheds, the study area was 290 

divided into four sub-regions to calculate the contributions of drivers. Liwan District (L) and Baiyun 291 

District (B) were respectively separate sub-regions; Yuexiu, Tianhe, and Huangpu districts were 292 

combined into one group named YTH, as a sub-region; and Haizhu and Panyu districts were formed 293 

as a group named HaP. Standardized data of factors were input into Canoco for Windows 4.5 RDA 294 

software and the significance of the variables was tested by the Monte Carlo method. 295 

3. Results  296 

3.1. Validation of the BOW identification model 297 

The optimal threshold selection (Fig. S2), overall accuracy, and kappa coefficients were obtained 298 

from the best-performing combinations of bands for the BIR model. It achieved the best overall 299 

recognition accuracy of 96.8%, with a BOW recognition accuracy of 92.9%, ORW accuracy of 300 

100%, and a kappa coefficient of 0.98. Meanwhile, Mann-Whitney U nonparametric test showed 301 

no significant differences between training and testing samples (Table S2). There are significant 302 



14 

 

differences in three BOW determination indicators (NH3N, DO, and SD) and BIR values between 303 

ORW and BOW bodies (Fig. S3), illustrating a good performance of the BIR model in separating 304 

BOWs and ORWs. 305 

The detection accuracies of BIR with the optimal thresholds for the years 2016-2020 were also 306 

calculated (Table 3). The overall accuracy was greatly improved after the threshold adjustment, 307 

such as the RA in 2016 from 66.67% to 91.67%. Especially, even for the images in 2017, the 308 

threshold correction was still required to apply to the main urban area. Meanwhile, there is an 309 

increasing trend of optimal thresholds over the past years. 310 

Table 3. Threshold correction results and recognition accuracy 311 

Year 

Before adjustment After adjustment 

Original threshold Corresponding RA Adjusted threshold Corresponding RA 

2016 0.62 66.67% 0.26 91.67% 

2017 0.62 82.14% 0.54 87.50% 

2018 0.62 73.21% 2.94 90% 

2019 0.62 59.02% 2.08 90% 

2020 0.62 90.32% - a) - 

a) “-” represents “not adjusted”, because there is no BOW sample for that year and the threshold 312 

correction to Eq. (1) cannot be performed. Therefore, the threshold for the BOW recognition model 313 

in 2020 is kept at 0.622 without adjustment.  314 

3.2. Spatiotemporal variations of BOWs 315 

With the adjusted thresholds for the BIR model, the spatial distributions of BOW bodies in the main 316 

urban area of Guangzhou City from 2016 to 2020 were obtained and shown in Fig. S4. BOW bodies 317 

showed a significant decreasing trend in the entire study area, despite obvious variations in different 318 

regions. Taking the distribution map in 2016 (Fig. 3) as an example, it shows that BOWs are 319 

concentrated in Liwan District and Haizhu District. To present the BOWs distribution in these parts 320 

more clearly, Fig. 4 displays the partial views of BOW detection results, which illustrated a 321 

progressively declined tendency of BOW bodies. BOW bodies were mainly observed in narrow 322 

rivers in central urban areas, with the largest number in Liwan District. 323 
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 324 

Fig. 3 Spatial distribution of BOW in 2016 of the study area 325 

 326 

Fig. 4 Partial views for the spatial distribution of BOW bodies in 2016-2020, corresponding to (a)-327 

(e) respectively. The spatial distribution of BOWs for an entire study area were shown in Fig. S4. 328 

To quantitatively analyze BOW changes in various districts, the BOW distribution maps (Fig. 329 

S4) were statistically counted year by year (Table 4). Due to the availability of images, not all areas 330 
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were covered every year, the calculation was performed in the overlap area of 5 years of images, 331 

labeled with ‘Samearea’ in Fig. 3. During the study period, a decreasing trend of BOW areas was 332 

observed in all districts. By 2020, no BOWs were observed in three districts, specifically, Yuexiu, 333 

Haizhu, and Panyu. 334 

Table 4. Statistical results of the area of BOW and ORW identified in 2016-2020 335 

Water type ORW (ha) BOW (ha) 

District 2016 2017 2018 2019 2020 2016 2017 2018 2019 2020 

Yuexiu 204.71 201.14 175.28 190.42 195.27 28.55 12.58 0.35 7.04 0 

Tianhe 348.81 337.53 337.42 310.02 361.77 34.59 38.30 3.57 18.85 1.18 

Liwan 497.32 528.82 507.88 487.45 537.72 53.25 12.84 3.23 12.50 0.05 

Huangpu 261.85 282.11 280.71 270.62 299.47 19.22 14.28 1.61 6.78 0.82 

Haizhu 1009.06 942.00 1092.44 1088.94 1144.77 50.24 18.04 1.36 8.68 0 

Panyu 1115.02 1014.31 1330.89 1281.97 1391.79 56.53 43.88 1.50 17.23 0 

Baiyun 529.18 668.60 626.48 550.08 655.50 205.13 75.59 2.00 57.95 0.88 

Total area 3965.95 3974.50 4351.11 4179.50 4586.28 447.52 215.51 13.62 129.03 2.93 

Areal percentage 89.86% 94.86% 99.69% 97.01% 99.94% 10.14% 5.14% 0.31% 2.99% 0.06% 

Quantitative zoning statistics were also conducted from the perspective of BOW management. 336 

Considering the water bodies extracted from GF images are greater than 2 m in width, excessively 337 

narrow rivers that cannot be identified in section 2.4.3 and rivers of discontinuous occurrence within 338 

5 years were excluded. The total number of rivers and lakes counted here is 97, dispersedly 339 

distributed in 7 districts, namely, 3 in Yuexiu District, 13 in Tianhe District, 30 in Liwan District, 7 340 

in Huangpu District, 13 in Haizhu District, 15 in Panyu District, and 16 in Baiyun District 341 

respectively. The study area includes 23 rivers listed as "35 BOW bodies in Guangzhou", 24 rivers 342 

in "50 BOW bodies", 46 rivers in "112 BOW bodies" 343 

(http://swj.gz.gov.cn/mssw/sjfb/content/post_6900098.html), and 4 important water bodies. The 344 

basic principle of zonal statistics is that as long as the length of BOW in a continuous river reaches 345 

1/3, the river segment is judged as a BOW body, which overcomes the limitation of determining 346 

BOW levels by a sampling point.  347 

 348 
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Fig. 5 Zonal statistics for multi-year BOW detection results. (a) shows the number of BOW and 350 

ORW changes by various districts and the total number by the whole study area. (b) exhibits the 351 

percentage of volume for BOW bodies over the years. The detailed amount of detected BOW bodies 352 

for each district were shown in Table S3 and Table S4. 353 

Across the whole study area, the number of BOW bodies shows a general decreasing trend 354 

from 2016 to 2020, and it dropped to about 1/4 of what it was in 2016(85.57%) by 2020(21.65%). 355 

Correspondingly, there is a yearly increase in the number of ORW. The results indicate that BOW 356 

bodies have been progressively treated, but they have not been eliminated. These trends in BOW 357 

quantities indicate poor water quality in 2016-2017 and a significant improvement from 2017 358 

onward. However, there is a rebound (72.16%) of BOW bodies in 2019 and the highest number of 359 

BOW bodies remained in Liwan District. In 2016-2017, BOW bodies were mainly distributed in 360 

Liwan District, Baiyun District, Panyu District, and Tianhe District; and then, BOW bodies were 361 

largely detected in Liwan District, Baiyun District, and Tianhe District in 2018-2020. There were 362 

relatively fewer BOW bodies in Huangpu and Yuexiu districts, showing their better river water 363 

quality. 364 

3.3. The effects of climate change on BOWs 365 

Correlation analysis (Fig. 6) and contribution calculations of BOW factors (Fig. 7) were performed 366 
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to quantify the relationship between environmental factors and BOW and the factors’ effects on 367 

BOW. Firstly, there was a strong positive correlation between BIR and BOW-area (r=0.60, p<0.05), 368 

which confirmed the rationality of the BIR model from another perspective. However, 369 

precipitation(r=-0.085) and temperature(r=-0.057) showed weak and negative correlations with 370 

BOW-area. Therefore, an increase in temperature and precipitation will cause the intensification of 371 

BOW. Meanwhile, there was a strong correlation between Pre and Tmp (r=0.74). 372 
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Fig. 6 Correlation coefficients between BOW and environmental factors. The X sign represents 374 

the insignificant correlation at the significance level of 0.05. 375 

For the entire study area, temperature contributed 4.4% while precipitation only contributed 376 

0.2% to the BOW (Fig. 7). However, the impacts of climate change on BOW varied greatly across 377 

different sub-regions. Precipitation contributed more to the BOW in the HaP district (5.2%) than in 378 

other areas and its contribution to BOW was higher than that of temperature in the HaP, L, and B 379 

districts. This suggests that precipitation has a greater impact on BOW in the HaP district than in 380 

other areas, and that its effect is larger than that of temperature. In the YTH sub-region, the 381 

contribution of temperature (17.9%) was higher than in other areas. Only in the YTH did the 382 

combined contribution of natural factors exceed that of human activities, indicating that the BOW 383 
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in this area was more significantly affected by climate change. Therefore, the slightly increasing 384 

temperature and precipitation over years increase the risk of BOW occurrence, particularly in YTH.  385 
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Fig. 7 The relative and total contribution rates of the environmental factors in the BOW-area. And 387 

the total contribution rates represent the adjusted explained variation of explanatory variables in 388 

RDA. The total contribution of all factors was lower than the sum of all factors for the covariance 389 

between environmental factors. The detailed contribution rates of factors were shown in Table S5.  390 

Notably, natural factors may not have a consistent correlation with and contribution to BOW 391 

in different districts. For example, although the correlation between temperature and BOW is lower 392 

than that(r=0.18) between Wastewater and BOW in the entire area, the contribution of temperature 393 

to BOW is higher than that of Wastewater (0.1%). This is because the correlation coefficient 394 

measures only the linear relationship between environmental factors and BOW, while the RDA 395 

model further explores the nonlinear relationship and takes into account the influence of other 396 

factors. The high correlation(r=0.55) between wastewater and industrial water use reduces its 397 

explanatory power for BOW after accounting for the effect of industrial water use. Therefore, this 398 

further underscores the necessity of dividing the study area into different sub-regions for separate 399 

analysis, and not overlooking the impact of temperature and precipitation on BOW by solely relying 400 
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on correlation analysis. 401 

3.4. Contributions of anthropogenic drivers to BOWs 402 

The correlation analysis (Fig. 6) revealed that anthropogenic factors had a stronger correlation with 403 

BOW-area than natural factors. BOW-area had a significantly positive correlation with Pop, Built-404 

ups, and Wastewater, while there was a significant negative correlation with Agricultural water. 405 

Built-ups exhibited the highest relationship among the anthropogenic drivers, with a correlation 406 

coefficient of 0.44 and a p-value of <0.05, followed by Pop and Wastewater. 407 

There are significant variations in the impact of human activities on BOW occurrence in the 408 

entire study area and its sub-regions. In the entire study area, the largest contributors to BOW were 409 

Build-ups with 14.3% and followed by Tmp and Domestic water (as shown in Fig. 7). Similar to 410 

natural factors, BOW in the sub-regions was affected to varying degrees by anthropogenic factors. 411 

In the HaP sub-region, Pop contributed the most with 31.4%, followed by Domestic water and 412 

Agricultural water. Built-ups accounted for the largest contribution in L with 17.9%, followed by 413 

Agricultural water. Pop and Domestic water were the main contributors to BOW in both HP and B 414 

districts. In the YTH sub-region, climate change, namely the Tmp here, had the largest effect on 415 

BOW, and Industrial water had a higher contribution compared to other districts. Overall, human 416 

activities had a greater impact on BOW occurrence than climate change in the main urban area of 417 

Guangzhou. 418 

4. Discussion 419 

4.1. Applicability of the BIR model 420 

The BIR model using high spatial resolution remote sensing images enables fast and accurate 421 

identification of the spatial-temporal variations in BOW, which lays the foundation for studying the 422 

relationship between climate change adaptation and BOWs. Image reflectance of BOW in B, G, and 423 

R bands is lower than that of ordinary water (Fig. S1(b)), due to the low reflectance of dark and 424 

suspended particles in BOW bodies(Duan et al., 2014). Therefore, the BIR model takes advantage 425 

of the differences in central wavelength between NIR and R, and G and R, achieving good BOW 426 

identification, and should be applicable to other images of similar band design to Gaofen. 427 
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Additionally, ASTB facilitated the model application to different ground conditions and high-428 

resolution remotely sensed images. 429 

Furthermore, the BIR model would be applicable to identify BOWs in typical southern urban 430 

rivers that are of relatively high TSS concentrations. In a typical northern city like Taiyuan, the 431 

image reflectance of ordinary water bodies in the Red band is higher than that in the Green band(Li 432 

et al., 2019a). In contrast, in the southern rivers, the high TSS levels result in higher image 433 

reflectance in the Green band (Xu et al., 2021a). Ordinary water rich in suspended sediment is 434 

therefore likely to be mistakenly recognized as BOW by existing models, particularly for tidal rivers 435 

in estuarine zones in southern China(Shen et al., 2019). Compared to previously published BOW 436 

models built for northern urban rivers with accuracies of more than 80%(Li et al., 2019a; Qi et al., 437 

2020; Shen et al., 2019), the BIR model exhibits better performance.  438 

4.2. BOW variations in the context of climate change adaptation 439 

From 2016 to 2020, BOW showed a downward trend overall (Fig. 5) benefiting from the vigorous 440 

promotion of policies in water management under climate change adaptation. DO was relatively 441 

low in general, while NH3N showed a decreasing trend year by year (Fig. S3(b)(d)). The high 442 

correlation (r=0.94, p<0.05) between NH3N and TP (Fig. S5) indicates that the area is significantly 443 

influenced by human activities. High concentrations of NH3N in 2016 could be linked to increased 444 

nutrient delivery to urban rivers from industrial facilities, wastewater treatment factories(Song et 445 

al., 2021; Zhu et al., 2022), and sewage discharges (Fang et al., 2022). Since 2016, Guangzhou has 446 

implemented a series of climate change adaptation measures (as described in section 2.1) which 447 

have weakened BOW drivers, and in turn mitigated BOW occurrence. Since 2017, the key factor of 448 

BOW was transformed to DO. Although the number of BOW bodies identified in 2019 suddenly 449 

increased for the excess of DO, NH3N was only partially exceeded (Fig. S3). Accordingly, the water 450 

quality has improved greatly, compared to the previous situations(Cao et al., 2020). 451 

The dominant driving factors of BOW bodies have shown obvious regional characteristics. The 452 

largest number of BOW bodies occurred in the Liwan District, which depicted the negative impacts 453 

from the factors with relatively higher contributions(Built-ups and Agricultural water), associated 454 

with faster economic development and higher wastewater discharge(Bhat et al., 2021). Flower 455 

industries in Guangzhou are mainly concentrated in Liwan District, so Agricultural water and 456 
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Wastewater had an important impact on rivers. The dense distribution of urban areas and the long 457 

absence of dredging in some rivers increased the risks of BOW bodies and the difficulty of pollution 458 

tackling(Rong et al., 2020). In the HaP sub-region, Pop and Domestic water performed better in 459 

explaining BOW variations, indicating that domestic wastewater discharge was the dominant factor. 460 

Haizhu and Panyu districts have cleaned up and rectified many "scattered and disorganized" sites 461 

after the implementation of the river chief system, including the closure of small printing and dyeing 462 

workshops, cracking down on illegal acts of discharging polluted water, and increasing investment 463 

for the construction of sewage networks, which reduced the amount of industrial water use and 464 

wastewater discharge (Fig. S6). There were relatively fewer BOW bodies in the YTH and a clear 465 

declining trend, with BOW almost no longer emerging until 2020. Tmp and Industrial water were 466 

core factors that dominated the BOW-area in these districts, resulting from the weaker impact of 467 

Built-ups in urban areas with relatively high vegetation coverage. In addition, COVID-19 has 468 

brought a halt to production in some factories(Braga et al., 2022), and therefore, a decrease in 469 

industrial wastewater discharge(Yunus et al., 2020) in 2020(Fig. S6), and a possible increase in 470 

domestic wastewater emission, which may influence the BOW variation.  471 

Furthermore, the overall contribution was lower than the explanatory degree of each factor(Fig. 472 

7) because of the correlations between these factors(Chen et al., 2018). The total contribution of the 473 

8 factors ranged from 4.2% to 45.6%, suggesting the possibility of other unconsidered factors(Du 474 

et al., 2022b; Fang et al., 2022) that were not considered in controlling the interannual changes in 475 

BOW for the data unavailability, and other potential factors such as the wastewater treatment 476 

investment. The instability of driving factors may be caused by limited 5 years of BOW variations. 477 

Accordingly, future studies on BOW changes should focus on combining long-term, high-resolution 478 

satellite images and water quality monitoring data to identify potential factors. 479 

4.3. Uncertainty and limitations                                                                                                                                                                                                                                                                                                                                                                                           480 

The BIR model adopted a single parameter method to determine the BOW level, which may cause 481 

errors and occasionally even differences (Lyu et al., 2022). Firstly, water quality changes reveal that 482 

BOW bodies are mainly attributed to the combined effect of DO and NH3N. Except for 2016, SD 483 

was higher than 25 cm (Fig. S3(a)). TP in most BOW bodies was higher than 0.4 mg/L (Fig. S3(c)), 484 



23 

 

while the standard value(40mg/L) of COD (Fig. S3(e)) is not exceeded. Besides, BIR showed a 485 

positive correlation (r=0.40, p<0.05) with NH3N, and a negative correlation with DO and SD (Fig. 486 

S5). This further proves that the controlling indicators of BOW in Guangzhou were NH3N and DO. 487 

What’s more, the optimal thresholds of the BIR model and OA of BOW recognitions were 488 

calculated by three different standards, namely, NH3N, DO, and NH3N∪DO∪SD (Table 5), to 489 

compare the difference between the three methods for identification results. The highest OA was 490 

based on the determination of any one of the three indicators, followed by a single NH3N method 491 

and the lowest accuracy for a single DO standard. The result justifies the use of the single indicator 492 

determination method adopted in section 2.3.  493 

Table 5. BIR model thresholds and BOW recognition accuracy under different discriminant criteria 494 

Standards NH3N DO NH3N Ｕ DO Ｕ SD 

Year 
Optimal 

threshold 
OA 

Optimal 

threshold 
OA 

Optimal 

threshold 
OA 

2016 0.258  83.3% 1.964  66.7% 0.258  91.7% 

2017 0.760  82.2% -1.639  56.3% 0.544  87.5% 

2018 2.941  95.0% 3.020  90.0% 2.941  90.0% 

2019 3.757  83.3% 8.910  70.0% 2.081  90.0% 

2020 0.622  88.7% 0.622  90.3% 0.622  90.3% 

In addition, there are some other limitations that should be addressed, such as the limited 495 

number of GF images and seasonal water quality data(Lyu et al., 2022; Nukapothula et al., 2019). 496 

Therefore, increasing the amount and spatial density of automatic water quality monitoring stations 497 

can improve the accuracy of the rapid identification of BOW bodies. Besides, the availability of 498 

month-scale data corresponding to climate change adaptation measures (such as the amount of 499 

domestic wastewater discharged and investment in wastewater treatment) would better assess the 500 

impact of climate change adaptation on BOW. 501 

Additionally, due to data unavailability and the complexity of factors influencing BOW, the 502 

present study reveals the annual spatial distribution of BOWs in the context of climate change 503 

adaption. Causes of BOW are very complex and are easily influenced by stochastic human activities. 504 

For example, one of the direct driving factors of BOW is the amount of wastewater discharge, which 505 

is related to the optimization of urban pipe networks and sewage treatment facilities and may even 506 

be affected by other non-climate change adaptation measures. Further exploration is needed to 507 
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elucidate the direct contribution of climate change adaptation measures to BOWs and its mechanism. 508 

4.4. Implications for management and policymaking  509 

Quantitative identification of BOW from time-series satellite images enables rapid monitoring of 510 

water pollution and scientific assessment for the effectiveness of BOW treatment. Spatial-temporal 511 

variations of BOW bodies in Guangzhou have shown that there was a significant improvement in 512 

water quality during 2016-2020, as a result of active implementation of water pollution control and 513 

climate change adaptation measures. However, strong risks of potential re-blackening exist in BOW 514 

bodies, such as the sudden increase in BOW occurrence in 2019. The identification of BOW bodies 515 

can help to quickly locate the key river sections to be treated. For example, Liwan District and 516 

Baiyun District still maintained a higher number of BOW bodies than other regions in 2020, despite 517 

some modest decreases in Wastewater discharge which have been recorded beginning in 2019 (Fig. 518 

S6). The BOW changes also enable the manager to grasp whether the policy is being implemented 519 

in the region and whether water treatment under climate change adaptation is making a difference 520 

to the improvement of the BOW phenomenon.  521 

Furthermore, studying the drivers of BOW will assist in the development of accurate policies 522 

and effective climate change adaptation measures for managing those environmental factors in local 523 

districts, to adapt to and mitigate the impacts of climate change and human activities on urban water 524 

environment to reduce BOW bodies. In the study area, the variations of BOW bodies were mainly 525 

correlated with Built-ups, Tmp, and Domestic water. Corresponding climate change measures need 526 

to be implemented with a priority. On the one hand, the impact of urbanization on water quality 527 

would be mitigated to some extent by rational planning of urban layout and functions, such as 528 

increasing green space coverage and urban park areas, and enhancing the effectiveness of 529 

ecosystems in purifying water quality. On another hand, increased investment in domestic 530 

wastewater treatment and strict control of discharges can promote the reduction of BOW bodies. 531 

Meanwhile, the dominant factors of BOW changes vary in different regions, suggesting that 532 

tailored management for controlling drivers would be more effective for treating BOWs. Taking the 533 

Liwan district as an example, increasing urban greenery and improving water-saving irrigation 534 

should be prioritized.   535 
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5. Conclusions 536 

With a BOW model constructed for identification BOWs in urban areas using high spatial resolution 537 

Gaofen images, the annual dynamics of BOW distribution from 2016 to 2020 in Guangzhou was 538 

explored in the context of climate change adaption. The main findings are summarized as follows: 539 

(1) The number of BOW bodies in the main urban area of Guangzhou showed a decreased tendency 540 

from 83 in 2016 to 21 in 2020, despite a re-blackening situation in 2019, illustrating that direct 541 

pollution control in the context of climate change adaptation measures has promoted water quality 542 

in the urban rivers.  543 

(2) BOW changes in different regions are dominated by distinct drivers. Human activities exhibited 544 

a more important role in the annual variations of BOW bodies. Appropriate climate change measures 545 

are required to fine-tune the management of BOW by mitigating those anthropogenic drivers and 546 

improving the efficiency and effectiveness of water quality optimization. 547 

(3) The BOW detection method aided by an automatic threshold selection algorithm has prompted 548 

the expeditious identification of BOWs fed with Gaofen images. This method facilitates quick 549 

monitoring of spatial-temporal dynamics of small BOWs in urban area with images of similar band 550 

design to Gaofen, and generates basic data required for exploring the direct contribution of climate 551 

change adaptation measures to BOWs and its mechanism. 552 
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