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A B S T R A C T

Humans can rapidly convert instructions about a rule into functional neural structures used to apply the rule.
The early stages of this encoding process are poorly understood.

We designed a stimulus–response (SR) task in which participants were first shown a SR rule on a screen for
200 ms, and then had to apply it to a test stimulus T, which either matched the S in the rule (SR trial) or not
(catch trial). To investigate the early stages of rule encoding, the delay between the end of rule display and the
onset of the test stimulus was manipulated and chosen between values of 50 ms to 1300 ms. Participants con-
ducted three sessions of 288 trials each, separated by a median of 9 h. Random sequences of 20 rules were used.
We then analysed the reaction times and the types of errors made by participants in the different conditions.

The analysis of practice effects in session 1 suggests that the neural networks that process SR and catch trials
are at least partially distinct, and improve separately during the practice of respectively SR and catch trials. The
rule-encoding process, however, is common to both tasks and improves with the number of trials, irrespective of
the trial type.

Rule encoding shows interesting dynamic properties that last for 500 ms after the end of the stimulus pre-
sentation. The encoding process increases the response time in a non-stochastic way, simply adding a reaction
time cost to all responses. The rule-retrieval system is functional before the encoding has stabilized, as early as
50 ms after the end of SR rule presentation, with low response errors. It is sensitive to masking however, pro-
ducing errors with brief (100 ms) test stimulus presentations. Once encoding has stabilized, the sensitivity to
masking disappears.

It is suggested that participants do encode rules as a parametrized function, using the same neural encoding
structure for each trial, rather than reconfiguring their brain anew for each new SR rule. This structure would
have been implemented from instructions received prior to the experiment, by using a library of neural functions
available in the brain. The observed errors are consistent with this view.

1. Introduction

In recent years, the question of how task instructions are converted
into neural representations that control behaviour has attracted a
growing attention (Cole et al., 2013; Ruge and Wolfensteller, 2010,
2013; Ruge et al., 2018; Bugmann, 2009, 2012; Bugmann et al., 2013;
Meiran et al., 2015; Palenciano et al., 2019). A better understanding of
instruction-based learning (IBL) processes – also called “rapid in-
structed task learning” (RITL) – would have applications in education,
medicine, social sciences and even robotics. A common observation in
humans is that the internal encoding of a rule based on instructions is
very fast. In particular, it is much faster than, e.g., learning from trials
and errors.

How does the brain encode stimulus–response (SR) rules? In early
work, we saw this as a theoretical problem of rapidly establishing a
connection between sensory and motor parts of the brain, and con-
sidered a neural network model that rapidly connected a series of relays
between sensory input and motor output (Bugmann, 2009, 2012). This
was an early form of fast deep learning.

Further investigations into fast mechanisms of synaptic learning,
combined with experimental data pointing to sub-second SR rule en-
coding times, suggested that the stimulus and the response neural re-
presentations should be separated by at most one synapse (Bugmann
et al., 2013). Although we postulated such short links to be located in
the hippocampus, data on the response time of human hippocampal
neurons (Mormann et al., 2008) demonstrated that this route was too
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2. Methods

2.1. Experimental design

2.1.1. Overall design
The overall experiment consisted of repeated displays of SR rules

followed by a test stimulus (see Fig. 1). First, the SR rule was presented

visually for 200 ms. For example, the display “A>” was to be inter-
preted as “if you are shown an A, press the right-side key”. This was
followed by a test stimulus T (e.g. “A”) after a delay. This delay was
randomly set to one of eight possible values (50, 150, 300, 500, 700,
900, 1100 and 1300 ms) and the test stimulus persisted until a response
was produced, or was masked after 100 ms.

Participants responded using “q” and “p” keys of the computer
keyboard for “left” and “right” responses respectively (Fig. 2). The re-
sponse was followed by a feedback screen displaying “correct” or “in-
correct” and a progress bar to give a sense of progress through the
experiment. The feedback display lasted until a key was pressed. Then a
new trial started with a 1000 ms pause and a 1000 ms mask composed
of two mask characters in the same positions as the symbols in the rule).
The experiment was controlled by an eprime program.

2.1.2. SR and Catch trials, and masks
The test stimulus was the same symbol as in the SR rule (e.g., “A”) in

two thirds of the trials (SR trials). In the remaining trials a different
symbol (e.g., “B”) was displayed to that of the SR rule (Catch trials).
Participants were required to press the space-bar when they en-
countered these Catch trials.

Fig. 1. The four experimental conditions used. The content of the greyed boxes
is displayed on screen, within the foveal vision angle. (Note that the mask
character (see text) is shown as“#” for convenience.)

Fig. 2. Illustration of the position of hands and fingers during the experiment.
Left and right index or middle fingers are positioned on the q and p key re-
spectively. The two thumbs are placed on the space bar. Usually only one
thumb is active during the experiment. The thumb is also used to trigger the
start of the next trial. (Note that a full-size keyboard and large screen were used
in the experiments.)

slow to explain the experimental data.
I maging data also suggest that the medial temporal lobe 

(Hippocampus) is not involved in fast SR learning, but rather that the 
prefrontal cortex–premotor cortex (PFC–PM) complex is (Ruge and 
Wolfensteller, 2010; Cole et al., 2010, 2013). It is however surprisingly 
difficult to  tr ace in  th e li terature di rect sy naptic co nnections linking 
visually responsive prefrontal areas to motor areas. So, how can new 
rules be encoded in a short time when there is not enough time to set up 
multi-synaptic connections?

This puzzle led us to question whether it was necessary to re-wire a 
new network for each instruction. At least in experiments where large 
series of rules of a similar type are presented to participants, such as rules 
of the type “If the test stimulus is the letter A then press the right-side key, 
and if the test stimulus is not an A, press the SPACE bar”, a large number 
of combinations of letters and left/right responses can be generated for use 
in successive trials. Technically, participants will see a different rule in 
each trial and numerous instances of IBL will be measured. However, these 
rules are functionally very similar and differ only by the identity of the 
letter and the response. Therefore, the participant could also use a neural 
network architecture where only the identities of the test letter and re-
sponse need encoding, e.g. memorizing the letter A and the specified re-
sponse R. Such a rule-stimulus memory could then be compared with the 
actual test stimulus to decide whether to execute R or SPACE. The con-
struction of such a network (IBL process) would typically happen during 
the instructions given to participants prior to the start of the experiment 
proper. In this case, we would not measure instances of IBL, but observe 
stimulus and response encoding effects.

The attractiveness of such a network is that the number of anato-
mical synaptic relays is not a limiting factor, because they do not need 
to be connected anew for each SR rule.

While it is difficult to test the fixed network hypothesis against, e.g. 
repeated re-construction, information can be gained from the dyna-
mical properties of the biological network or the re-construction pro-
cess in an experiment where processing time constraints are applied, 
e.g. by limiting the encoding time or limiting the duration of the test 
stimulus. One would expect a newly built network to not be able to 
function before all the connections are established, whereas a fixed 
network would only exhibit errors of stimulus and response encoding if 
tested at short notice.

Our new experimental design is of the type described above: S → R 
(SR trial) and not-S → SPACE (Catch trial). I n half of the trials, the 
duration of the visual test stimulus is limited to 100 ms using a mask to 
probe the encoding progress at various times after the presentation of 
the rule. We initially used catch trials to maintain the focus of the 
participants; however their analysis turned out to provide additional 
information on the processes involved.

In the remainder of this paper, after presenting our methodology, 
we first give our results regarding reaction t imes, distributions of re-
action times, and timing and type of erroneous responses. We also de-
scribe practice effects observed during the first session. In the discus-
sion section, we then consider theories of task encoding such as look-
up-table (LUT) learning of each SR instance, in the light of our results 
and show that these are made unlikely by the fact that catch trials add a 
huge number of rules to be learnt. Similarly, we find no strong support 
for the concept of brain network reconstruction for each rule. A more 
attractive possibility is that of a parametrized fixed network developed 
once at the start of the experiment. We propose a simple circuit diagram 
to capture its essence.
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It is conceivable that participants use a serial strategy in performing
the task, i.e. encode the rule first, then process the test stimulus. This
approach is possible when the test stimulus is displayed until the re-
sponse is produced. The only effect in trials with short delays would be
to delay the response. So, in order to probe the state of the system
during encoding, we limited the duration of the test stimulus and its
persistence in the visual system by using a mask in 50% of the trials. In
these masked trials, the test stimulus was shown for only 100 ms, after
which it was replaced by the mask character (Fig. 1) (Rohenkohl et al.,
2014).

2.1.3. Stimulus display
We used the 10 first capital letters of the alphabet as stimuli so that

participants would not have to learn new stimuli as part of the task. The
characters were of the type “Courier New”, size 40, bold, black on a
white background. To complete the SR rule, the letter was randomly
complemented with either a “>” or a “<”, as mentioned before (test
stimuli consisted only of a letter). The mask was a composite character
created by superposing all 10 characters used in the experiment. They
subtended an angle of 1.34 degrees laterally, and the two characters
one above the other in a rule subtended a vertical angle of 4.6 degrees.
The display was a 22 in. LCD computer monitor with 1920 pixels by
1080 pixels.

2.1.4. Number of trials and sessions
For each of the eight possible delay values, there were 12 SR trials,

12 masked SR trials, 6 catch trials and 6 masked catch trials
(8 × 36 = 288 trials). As we used a pool of 20 SR rules (10 letters with
two possible “<” and“>” responses to for each), participants were
exposed to each rule on average 288/20 = 14.4 times during a session.
Participants thus saw both SR rules for a given letter, e.g. “A>” and
“A<”, several times during a session.

In previous work, we noticed that the performance improved during
the first session and then stabilized in subsequent sessions (Bugmann
et al., 2013). We therefore ran three sessions in order to obtain stable
performance data from sessions 2 and 3. Data from session 1 were used
to investigate practice effects. The sessions lasted typically 30 min and
were separated by time gaps ranging from 40 min to 7 days, with a
median of 9 h.

2.2. Participants, instructions and practice trials

Participants were instructed that the two symbols displayed first
were a S–R rule that had to be applied to the test stimulus displayed
afterwards. They were told that if the test stimulus was different from
the character in the rule, they should press the space-bar instead of
producing the response specified in the rule. They were instructed to be
as fast and accurate as possible. 30 practice trials were presented im-
mediately prior to the first session of the experiment.

Participants were students and people from the general public. They
were paid with course credits or shopping vouchers. 15 participants
completed all three sessions.

Pre-processing of response times from sessions 2 and 3 led to the
rejection of four participants, for the following reasons: (i) Participants
were significantly slower than others in SR trials (e.g. average RT over
all SR trials of 960 ms while all the others were less than 550 ms). (ii)
Participants had several instances of large standard deviations (above
300 ms) in their response times, compared to an overall average SD of
less than 100ms, (iii) Participants had large variations of RTs for
neighbouring delay values (e.g. RT of 900 ms for delay = 900 ms and
RTs around 600 ms for delays of 700 ms and 1100 ms). These criteria
typically eliminated participants who were not engaging with the task
or had frequent lapses of concentration.

The 11 retained participants were 6 females and 5 males, with an
average age of 22.2 ± 7.3). The number of participants was in line with
previous experiments and provided sufficient statistics to distinguish
the effects of different conditions explored here. The experimental de-
sign was approved by the Ethics Committee of the Faculty of Science of
the University of Plymouth.

3. Results

In the following, we first examine practice trials, how RTs improved
and errors diminished. The analysis of these changes as a function the
overall number of trials and the number of trials devoted to SR trials
and catch trials respectively reveals at least three distinct neural pro-
cesses involved in the task. We then examined the differences in be-
haviour between short and long delays between SR rule presentation
and rule retrieval. We find that the rule encoding process uniformly
(not stochastically) adds time to all the responses. We then examine the
effects of masking on response times and errors. We found that masking
widens the distribution of SR response times, but not that of catch trials.
In addition, the recognition of SR stimuli is intensity-sensitive, but not
for catch trials. This provides further evidence for different processes
being used these different trial types. Masking causes errors only for
short delays after SR rule presentation, and these consist mainly of mis-
classifications.

3.1. Practice effects on response times

Fig. 3 shows (a) the average response time per delay is larger in
session 1 compared to sessions 2 and 3. (b) That the response time is
longer for short delays (50–300 ms) compared to long delays
(700–1300 ms). We are going to examine the effect of practice on short-
delay responses and long-delay responses separately. The assumption is
that short delays probe the participant in a state of fresh or incomplete
SR rule encoding. In contrast, for long delays, the rule encoding is
complete and RTs reflect only on the retrieval processes.

Fig. 3. Average RT for correct Catch and SR trials as a function of the delay between the end of the rule presentation and the start of the test stimulus, for all three
sessions. Masked and non-masked trials are averaged together. Standard error bars are shown.
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To quantify practice effects, the RT data from the 288 trials in
session 1 were grouped in 18 trial groups, each covering 16 trials (in
other words, the groups 1–18 covered trials 1–16, 17–32, …, 272–288
respectively).

Fig. 4 shows that long delays have RT diminishing almost linearly
with the number of trials complet for both SR and catch trials. Short
delays (dashed curves) have an RT dropping rapidly up until the
halfway through the session (144 trials).

Long delay curves suggest an effect of trial type repetition, i.e. catch
trials appear to improve more slowly, but a plot of the RT vs number of
repetitions of trials of each type shows the same rate of improvement
for catch and SR trials (see Fig. 5). This suggests a process-specific ef-
fect, i.e. catch processes and SR processes improve separately when
they are practiced.

In contrast, the main effect on changes to short delay RTs was the
number of trials practiced, with RTs stabilizing around halfway through
the session. This suggests that the short-delay RTs are influenced by a
process common to both types of trials, such as the encoding of the task.

If we assume that the RT at short delays include encoding, retrieval
and motor costs, and the RTs at long delays include only retrieval and

motor costs, we can take the time difference between RTs for short and
long delays in Fig. 4 as the encoding cost. We see that this stabilizes
from about the middle of the session. Further RT reduction is then due
to the processes active for long delays.

The encoding cost appears to be smaller for catch trials than for SR
trials, but for sessions 2 and 3, i.e. in a practiced system, it is the op-
posite (50 ms for SR trials and 70 ms for catch trials (see Fig. 9). In a
purely serial process, these two costs should be the same. Here, the
retrieval process, during encoding, seems to be slightly longer for non-
matching test stimuli. This may be caused by the additional classifica-
tion process that is used in catch trials (see Section 3.4), but a detailed
model will be needed to answer this.

3.2. Effect of practice on errors

We also examined the total number of errors over all participants as
the sessions progress. Overall, our participants made very few errors,
forcing us to use only 6 trial groups per session (thus covering 48
successive trials each). Since sessions two and three are qualitatively
very similar, we only consider the average error rate for those (Fig. 6).

Fig. 4. Practice effects in session 1. The decrease of the average
RT for four sets of data is shown. SR trials are shown in green
(lower two curves), and catch trials in red (upper two curves). The
dashed lines show short-delay data and the full line shows long-
delay data. Masked and non-masked trials are averaged together.
Standard error bars are shown. Note that for sessions 2 and 3,
these four curves are horizontal lines.

Fig. 5. Practice effects. Data for long delays in Fig. 4 are plotted as a function of the number of repetitions of each type of trial, SR and catch. Note that there are 20
individual SR rule and 180 individual catch rules (see discussion) that are not distinguished here.
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We find that the number of errors diminishes during the first session
and then stabilizes in session two and three, with maybe a hint of fa-
tigue towards the end of sessions two and three.

In the first session, for all delays, two thirds of the errors occur
during SR trials and one third during catch trials, reflecting the relative
frequency of these trials. In sessions 2 and 3, however, half of the errors
occur during SR trials, and half during catch trials (bearing in mind that
the overall number decreased). This suggests a relative improvement of
performance during SR trials than during catch trials, which is sup-
portive of the idea that the two trials rely on distinct mechanisms.

What has changed? Lets us first define the type of errors that we
observed: “SR_to_opposite” are errors where the participant responds
with the opposite response, e.g. left instead of right, from the one de-
fined in the SR rule. “SR_to_space” are errors where the participant
presses the space-bar in a SR trial. “Catch_to_R” are errors where the
participant produced the R response instead of pressing the space-bar.
“Catch_to_opposite” are errors where the participant presses the re-
sponse opposite to R instead of the space-bar.

If we now focus on the first 2 trial groups in session 1 and the first 2
trial groups in sessions 2 and 3 in Fig. 6 (this corresponds to the first 96
trials in these sessions), we find that SR_to_opposite errors have almost
disappeared in sessions 2 and 3 (from 3.5% to 0.2% in masked and
unmasked trials). SR_to_space errors dropped from 8.8% to 2% in
masked trials and dropped slightly in unmasked trials (from 2% to
1.3%). Catch_to_R errors decreased barely in masked trials (6.3% to
5.6%) and increased in unmasked trials (from 1.7% to 3.7%).

The results for R and space errors are summarized in Fig. 7. We
ignored SR_to_opposite and Catch_to_opposite errors that became al-
most inexistent after practice. In these plots, a reduction of the distance
between the two curves generally indicates an increase in selectivity,
i.e. test stimuli T are more often correctly classified as “same as S” or
“different from S”. This is visible in the masked trials, although there
are also signs of an increased bias towards producing the R response. In
the unmasked trials, there is no evidence for increased selectivity, but
an increased tendency to produce R responses in error.

3.3. Effect of short delays on the distribution of responses times

We now focus on sessions 2 and 3 that show stable performances.
Fig. 3 (and Fig. 10a later on) show longer RTs for short delays be-

tween the end of the SR rule presentation and the start of the test sti-
mulus. For sessions two and three, that RT cost is around 100 ms for the
shortest delay and we see here that the encoding cost diminishes with
the delay, fully disappearing for delays above around 500–700 ms.
Here, we are interested in the mechanisms involved in the early phase
of rule encoding (for delays from 50 ms to 300 ms).

First, we compare the distribution of RTs for unmasked correct SR
trials for short delays (50–300 ms) vs long delays (700–1300 ms). Fig. 8
shows that the observed RT increase is due to a global shift of the
distribution of RTs towards longer times. Q–Q plots (Fig. 9a) show that
distributions for short and long delays have the same core width, and
are shifted by around 50 ms to longer delays. There are also a small

Fig. 6. Evolution of the number of errors as a session progresses. For sessions 2 and 3, the average number of errors is shown. There are no errors bars because, for
session 1, the plot shows the counted number of errors, and for sessions 2 and 3, it shows the average between two counts.

Fig. 7. Error rate during the first 96 trials of
practice (session1) compared to the error rate
during the first 96 trials of sessions 2 and 3.
The bottom half of the figures has inverted Y-
axes, so that points near the midline corre-
spond to low error rates. The upper half re-
present errors where the response R from the
SR rule is produced in a catch trial. The lower
half represents errors where the space bar is
pressed in a valid SR trial, i.e. where the test
stimulus T is the same as the stimulus S spe-
cified in the SR rule.
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number of data points in a longer tail for short delays. This suggests that
the process that is at work shortly after rule presentation is adding time,
not variability. A few points of the tail of the long-delays distribution
are moved even more, by around 120 ms. The behaviour is similar for
catch trials, with a core shift of 70 ms, then a few long RTs shifted by
200 ms, from around 800 ms in long-delay RTs (Fig. 9b).

3.4. Effect of masking on RT distributions

Next, we note that masking increases slightly the average RTs for
short delays (Fig. 10).

Looking at the effect of masking on the distribution of RTs for short
delays in more detail, we find in (Figs. 11 and 12) different effects on SR

Fig. 8. Short delay effects. Distribution of RTs for unmasked (a) correct SR trials and (b) correct Catch trials for delays 700–1300 (green or red) and 50–300
(translucent grey).

Fig. 9. Delay effects. Q–Q plots comparing the
distributions of RTs for long and short delays
for (a) SR and for (b) catch trials in sessions 2
and 3. The red line is the identity line. The blue
line indicates by how much the distribution for
short delays has been shifted to later times (by
50 ms for SR Trials, and 70 ms for catch trials)
compared to the distribution for long delays.
The light blue line indicates by how much a
small number of points in the tail of the dis-
tribution for long delays have moved even
further. (For interpretation of the references to
colour in this figure legend, the reader is re-
ferred to the web version of this article.)
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and catch trials.
In SR trials, masking causes a widening of the distribution, revealed

by larger-than-one slope in the Q–Q plot (Fig. 12a). More precisely,
masking does not change the distribution for unmasked RTs <400 ms,
presumably because these early RTs do not need Ts lasting longer than
100 ms. The longer unmasked RTs however are slowed down by the
limitation in T duration. Then, a group of unmasked RTs between
700 ms and 800 ms correspond to masked RTs around 850–900 ms
(flattening of the Q–Q plot and a peak in the distribution of masked

trials), as if 850–900 ms was a preferred RT for a small set of longer
responses. The cause is unclear. Are these ”correct by chance” responses
(see Section 3.6)? Note that masking does not have a statistical all-or-
none behaviour here. Masked stimuli are processed, but seem to pro-
vide lesser “drive” for the triggering of the R responses.

In catch trials, the central parts of the distributions are the same
(Fig. 12b). Some short RTs have disappeared due to masking and long
ones have appeared. Here, masking does essentially not slow down
responses (except for a group of late responses), indicating possibly that

Fig. 10. Masking effects. Average RTs in sessions 2 and 3, for SR and catch trials, masked and unmasked. Standard error bars are shown.

Fig. 11. Effects of masking. Histograms of response times for delays between 50–300 ms. The translucent bars represent (a) correct masked SR trials and (b) correct
masked Catch trials. The green and red bars (left and right distributions) represent the correct responses in unmasked SR and catch trials respectively.
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the decision about the mismatch between S and T takes an amount of
time not influenced by the duration of T.

Thus, the generation of the R response seems directly driven by the
T, while catch responses depend on a process for which a 100 ms sti-
mulus is a sufficient input.

3.5. Effect of masking on errors

Masking increases the number of errors for short delays (Fig. 13).
For unmasked trials, the number of errors stays low even for small
delays, indicating that the rule encoding process has produced a

Fig. 12. Masking effects. Q–Q plots for short delays for masked vs unmasked trials for (a) SR trials and (b) catch trials. For comparison the long-delay data are also
shown, for (c) SR trials and (d) catch trials. The red line is the identity. The blue line in (b) is shifted upwards by 140 ms. In (a) it has its origin at (400,400) and a
slope of 1.6.

Fig. 13. Number of errors for each delay in masked and unmasked trials. (a) For session 1. (b) Average numbers over sessions 2 and 3. SR and catch trials show a
similar behaviour and their counts are added up.
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functional system already 250 ms after the start of the rule presentation.
Masking also affects the number and types of errors. To analyse

these errors, we retain the division between a short (50–300 ms) and a
long delay group (700–1300 ms). We compared the errors in masked
and non-masked trials (see Table 1). For SR trials, we counted the
number of SPACE responses produced in error, and the number of op-
posite responses (Opp R), e.g. “right” when a “left” was expected. For
catch trials, we counted the number of responses (R) specified in the SR
rule (thus produced in error), and the number of opposite responses
(Opp R).

A number of observations can be made in Table 1. First, it is ap-
parent that the percentage of correct results in unmasked SR trials is the
same for short and long delays. There are more errors in catch trials, but
here too there is no difference between short long delay, in unmasked
trials. Thus, the process that increases the RTs for short delays does not
affect the accuracy.

Catch trials tend to contain more errors than SR trials, and most of
these errors are “R” type errors, i.e. producing the response indicated in
the SR rule. This suggests that a priming mechanism exists for the re-
sponse expected from the rule (Meiran et al., 2015). One could spec-
ulate that participants have treated the task as a “delayed- response”
task with a R response prepared and using the test stimulus as a GO
trigger (see, e.g. Wise et al., 1997).

The picture painted by the masked trials is, however, very different.
Masking has no effect on errors for long delays (see e.g. the values
highlighted with * in the bottom half of Table 1), but strongly increases
the percentage of errors for short delays. Opposite R errors are almost
inexistent in catch trials and seem triggered in SR trial with a prob-
ability independent on the delay or the mask. Since masking in itself
does not affect the perception of the stimulus (because it has no such
effect for long delays), it is not immediately clear how the mask might
cause errors in short delay situations.

Note that a great majority of masked stimuli are processed correctly.
In the masking literature, 100 ms is a relatively long stimulus duration
that allows over 90% correct processing of the stimulus (see e.g. Bacon-
Macé et al., 2005). According to Rohenkohl et al. (2014), masking

disrupts early iconic stimulus traces, with neurophysiological data
collected from monkeys showing a weakening (less spikes per second)
and shortening of the neural signal (Kovacs et al., 1995). Maybe this
can cause a proportion of misclassification errors explaining the in-
creases space errors in SR trials and increased R errors in catch trial.

3.6. Response time distribution of errors

To investigate how the mask might cause errors in more detail, we
look at the RT distribution of error trials (Fig. 14). As before, we con-
sider short and long delays separately, and are interested in differences
between masked and unmasked trials for both catch and SR trials.

For unmasked trials (left column of Fig. 14), the errors appear all to
be of the type “hasty misclassifications”, with early R produced in catch
trials and early SPACE responses produced in SR trials (the number of
errors taken from Table 1 is N= 17 for figure (a), N= 10 for (c),
N= 20 for (e) and N= 7 for (g)). There is also a group of late RTs,
above 1.1 s, that we tentatively identify as “I do not know” type errors.

In masked trials, only short delays show an effect of masking. In SR
trials (Fig. 14d: N= 30) SPACE errors occur with RTs of normal SPACE
responses, presumably caused by a T misclassification. In catch trials
(Fig. 14b: N= 48), the picture is more complex. We find R produced
with RTs early in the SR distribution, early in the catch distribution and
some late in the catch distributions. These could correspond to an early
bypass of the catch classification system, errors by the catch classifi-
cation system and errors in response initiation, respectively. The mask
thus seems to cause mainly erroneous classifications during encoding,
and prevents hasty decisions.

4. Discussion

In this section we first discuss experimental evidences for distinct
processes being involved in our task, and what data tell us about the
dynamics of the rule encoding process. We then evaluate three theories
of rule encoding: Look-up-tables of S-R rules, fast task switching be-
tween rule sets, and the use of a fixed parametrized network. The latter
is suggested to be the more plausible for our experiment.

4.1. Practice effects, errors, delay effects and masking

Our task is not a straightforward SR rule_encoding_and_retrieval
task. The introduction of catch trials “to maintain the concentration of
participants”, actually expands the rule-set significantly, from 20 to 200
(see Section 4.2.1 further down), and led us to analyse both SR and
catch trials.

Analysing the practice session 1 reveals that processes involved in
SR and catch tasks are, at least in part, distinct. The short-delays cost
decreases with practice trials and reaches an asymptotic level for the
same number of trials for SR and catch trials, suggesting that is not
specific to either trial type. What comes to mind is that it reflects the
development of the rule encoding process, given that there is no dif-
ference between SR and catch trials as far as rule encoding is concerned.
It is only when the test stimulus is shown that the two trial types be-
come different.

A slight problem is that the size of the encoding cost appears dif-
ferent for SR and catch trials (smaller for SR and larger for catch). This
forces us to consider a more detailed model of encoding, bearing in
mind that it may be the same neural system that is modified after rule
presentation and that then classifies the test stimulus.

The analysis of the effects of masking on RT distributions suggests
that SR and catch trials use a different decision process, at least during
encoding, where the responses in SR trials is more directly driven by the
test stimulus, whereas catch trials rely on an additional stimulus clas-
sification process that produces an output of constant magnitude. For
long delays, both outputs appear to be independent on the stimulus

Delay 50–300 ms Delay 700–1300 ms

n % n %

SR trials
R Correct No mask 768 97.34 1033 97.82

Mask 740 94.39 1029 97.63
Total 1508 95.87 2062 97.73

SPACE error No mask 10 1.27 7 0.66
Mask 30 3.83* 13 1.23
Total 40 2.54 20 0.95

Opp R error No mask 11 1.39 16 1.52
Mask 14 1.79 12 1.14
Total 25 1.59 28 1.33

Catch trials
SPACE Correct No mask 378 95.45 504 95.64

Mask 346 87.37 504 95.45
Total 724 91.41 1008 95.55

R error No mask 17 4.29 20 3.80*
Mask 48 12.12* 20 3.79*
Total 65 8.21 40 3.79

Opp R error No mask 1 0.25 3 0.57
Mask 2 0.51 4 0.76
Total 3 0.38 7 0.66

Table 1
Breakdown of responses into correct and errors (SPACE: space bar pressed; R: 
response specified in SR rule pressed; Opp R: opposite response pressed) for SR 
and Catch trials. Values highlighted with * are discussed in the text.
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Fig. 14. Error distribution for short delays 50–300 ms (top half) and long delays 700–1300 ms (bottom half), for unmasked (left column) and masked trials (right
column). The top row in each half (a, b; e, f) shows catch trial errors (responding R rather than pressing the space bar). The bottom row in each half (c, d; g, h) shows
SR trial errors (space bar rather than responding R). The reference histograms in the background are for correct unmasked SR and catch trials for short delays (top
half group) and long delays (bottom half group). Bins for errors are 80 ms except for 60 ms in (a, b) because the number of observations is small (see Table 1).
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“A>” followed by A→ respond right;
“A>” followed by B→ respond SPACE;
…
“A>” followed by J→ respond SPACE;
Thus, our experiment could be represented by 20 × 10 = 200 in-

put–output mappings (20 SR mappings and 180 catch mappings). In
Forrest et al. (2014), associative input–output learning took around 75
trials per mapping (their experiment used a task cue followed by one of
four numbers to classify either as low/high or even/odd, as specified by
the task cue. There were 8 possible combinations). In Palmeri (1997),
around 200 trials are needed per mapping to convert a counting process
into an input–output mapping (participants see a card with N randomly
placed dots and need to press the Nth key. There were 5 examples for 6
possible numbers, i.e. 30 combinations).

In our experiment most of the LUT learning would have happened in
session 1, as we see no practice effects in sessions 2 and 3. The 20 SR
rules are used in 192 trials, i.e. each SR mapping is seen 9.6 times in
session 1 (a number similar to the rule memorizing experiment by Ruge
and Wolfensteller (2010) – using only 4 rules). However, there are
20 × 9 =180 catch rules but only 96 catch trials. Hence each catch
input–output mapping is only seen in average 0.533 times in session 1.

With such small number of repetitions, exemplar learning does not
seem practically possible here, at least for the catch task. For such cases,

learning the task rather than exemplars appears to be a more feasible
solution. Different considerations led Forrest et al. (2014) to a similar
proposal: “…associatively-based compound retrieval can serve as the
basis for performance with a small stimulus set. But, when organization
by tasks is apparent, control via task-set selection is the natural and
efficient strategy”.

4.2.2. Network re-configuration
What we normally understand by Rapid Instructed Learning, is the

rapid generation of a “neural program” that can execute the instructed
task. However, little is known about the mechanisms of the corre-
sponding task encoding. In some cases, participants report silent re-
hearsal, but it is unknown how this leads to readiness to respond when
a test stimulus is presented. Ruge and Wolfensteller (2010) propose a
process by which “abstract” rules are converted into “pragmatic” (ex-
ecutable) ones. Cole et al. (2017) suggest that the frontoparietal net-
work consists of flexible hubs that help implement flexible changes in
cognitive programs during RITL. It is proposed that such a program
generates responses as prepared reflexes (Meiran et al., 2015). A
number of papers deal with “cognitive control” that “…proactively
configures information processing to suit expected task demands”
(Jiang et al., 2018). Typical experiments to examine cognitive control
use task switching protocols. These use a number of tasks that partici-
pants know in advance and give them cues as to what task to perform in
a given trial. One could argue that such experiments do not test the
conversion of instructions into task representations, but only the recall
of a task-set.

Task switching causes response time costs of over 150 ms at short
retrieval delays (Monsel, 2003; Hunt and Klein, 2002). That cost di-
minishes with practice, leading Meiran (1996) to suggest that practice
led to faster reconfiguration. Experiments by Strobach et al. (2013) and
Pashler and Baylis (1991) show that practice speeds up the “central
response-selection” stage (not perceptual or motor stages). Hunt and
Klein (2002) note that switching costs disappear for long delays.

There are many similarities between these observations and our
results, such as an RT cost for short delays, with a reduction of this cost
with practice, and elimination of any cost for long delays. The only
difference is that task switching increases errors at short delays
(Monsel, 2003), while our error rate remains constant for all delays. It is
unclear whether practice effects are similar, as we have not found an
analysis similar to ours for task switching experiments.

Is our experiment a “task switching” experiment? In Monsel (2003),
tasks are functions applied to the test stimulus T. e.g. function F1(T)
tells if a test number odd or even, function F2(T) tells if it is large or
small. Task switching is function switching. In our experiment we have
a set {A, B, …,J} of 10 possible values for T, and in each trial we use a
different function F(T) corresponding to a different SR rule, e.g. if
T = A, then press p, or if T = B press SPACE, or if T = C, press SPACE,
… So, in that sense there is task switching in each trial, but it requires
each of the 20 tasks to be encoded in advance. A difficulty is that we did
not instruct participants of each individual task and there is not enough
exposure during practice to learn them.

Another view would be that participants use only one function F(SR,
T), where the SR rule is a parameter of the function, and it is acquired
and stored in each trial. This view would not apply to the task in Monsel
(2003), because the odd/even and large/small functions do not just
differ by some parameters.

Therefore we are tempted to paraphrase Forrest et al. (2014) by
suggesting that when task switching involves parametrized functions,
the natural an efficient strategy is to implement the function once at the
start of the experiment, then modify only the parameters for each new
task.

In support for this idea is the lack of dysfunctional period after the
presentation of a new rule. We speculated in the introduction that
participants would not be able to execute the task before re-config-
uration has taken place, but they were able to generate error-less

intensity.
For long delays, RTs decrease with trial type repetition, consistently 

with the idea that SR and catch response selection and execution are 
handled by distinct systems.

Our experiment used a time-constrained design to probe the early 
encoding stages. By examining sessions 2 and 3, that are free from 
practice effects, we found an encoding effect that slows down the re-
sponses by around 100 ms for both types of trials for the shortest delay 
(Fig. 3). This time is much shorter than the 500 ms delay range over 
which that effect i s p erceptible, s uggesting a  s low e ncoding process 
during which responses are delayed.

It is notable that the distribution of RTs for short delays is the same 
as for long delays, but shifted to longer RTs. Consistently, the standard 
deviation of RTs is not increased for short delays (see e.g. Fig. 3). Thus, 
the encoding process delays all responses by an amount of time that is 
largest in its early stages. One can think of a dynamical system that is 
initially imprinted with the SR rule and takes some time (e.g. 500 ms) to 
become fully stabilized, during which it has less power to trigger a 
response to a test stimulus. The diffusion f ramework n icely explains 
response delays when the input signal is weak (see e.g. Ratcliff et al., 
2016).

Masked trials show that the labile early encoding state finds it dif-
ficult to process brief visual information and makes a number of mainly 
classification errors (for long delays, masking causes no problems at all, 
and a 100 ms stimulus is perfectly sufficient for rule retrieval). Instead, 
during early encoding, a more persistent visual input is needed to 
generate a decision of match or non-match. This is another feature that 
a detailled model should reproduce.

4.2. Task encoding

We examine here different m ethods b y w hich t he rule-encoding 
process could take place: exemplar learning, network re-configuration, 
or using a fixed network with dynamic elements.

4.2.1. Exemplar learning
This section covers a process called sometime exemplar learning, 

associative retrieval or look up table (LUT) approach. Indeed, partici-
pants could avoid encoding rules by simply memorizing all instances as 
input–output mappings. For instance one of our 20 SR rules, e.g. the 
“A>” rule, could be converted into 10 associations (we use a set of 10 
letters) where the first represents the SR rule and the 9 others represent 
the catch rule:

11



responses to test stimuli presented 250 ms after the start of the display
of the new rule. Yes, masking shows an early-stage difficulty in classi-
fying the test stimulus but the very few resulting erroneous responses
could only be produced by a functional network. Indeed this argu-
mentation would have to be revised if new data show that a functional
network can be built anew in less than 250 ms.

4.2.3. Fixed network
Hommel (2000) noted that the structure of instructions influence

the organization of the task. Lets assume that participant literally en-
coded the instruction given prior to the measurements: “ If the T = A,
respond with the R in the rule. If it T different from A, press the space
bar”.

The brain provides a library of functions, or “repertoire”, that can
help design such a fixed network. For instance, neurons in prefrontal
cortex (PFC) are known to encode whether two successive stimuli
match or do not match. Note that there is an ongoing debate whether
this function is permanently available (Hussar and Pasternak, 2013; Qi
et al., 2012), or is built in a task-specific way (Stokes et al., 2017).
Similarly, the motor system has a number of neurons that trigger spe-
cific actions, such as the finger presses needed in this experiment
(Graziano and Aflalo, 2007).

Using such repertoire-functions, the task could be implemented as a
fixed network, e.g. as in Fig. 15, in which SR-rule encoding can be
achieved with no synaptic learning at all. Such a network would also
provide an efficient solution to the encoding of catch trial responses, by
associating the ”not match” function to the space-bar response, instead
of encoding 9 × 10 catch rules.

Two parameters would need memorizing: (i) the nature of the re-
sponse R and (ii) the identity of the stimulus S to compare to the future
test stimulus T.

These memorizing processes should only affect the responses for
short delays. Response storage can be very fast, by starting sustained
firing in some neurons. There are data on early response encoding, e.g.
in the premotor cortex (PM) (see e.g. Ledberg et al., 2007). The short
delay effects would therefore be linked mainly to the S memorizing
processes. We mentioned earlier a dynamic systems hypothesis of a
combined memorizing-and-comparing mechanism. A more detailed
model of that process would be needed to explain the short-delay ef-
fects.

With a fixed network, practice would improve its function, instead of
the individual SR mappings. One can speculate that the sub-functions of
the network are only improved when they are practiced. The memor-
izing stage is common to all trial types and improves with the number
of trials performed, as revealed by a reduction of the short-delay cost
(Section 3.1). The functions processing match and non-match events
would improve separately, when respectively SR and catch trials are
practiced, as revealed by a reduction of the RTs for long-delay trials
during practice. As a side note, it is striking that practice effects com-
pletely disappear in sessions 2 and 3 (graphs not shown).

In the fixed network model, the RT difference between SR and catch
trials (i.e. with an average of 153 ms, and no systematic variation with
the delay) is likely to be due to the differences in processing speed in
the two distinct processing streams. One hypothesis is that the R re-
sponse is primed during SR presentation, hence is executed as a “pre-
pared reflex” (Meiran et al., 2015; Muhle-Karbe et al., 2016). Whereas,
in the case of a catch trial, the prepared response needs first to be in-
hibited and then the SPACE response ramped up (Pouget et al., 2017).
There is also a possible extra classification process in catch trials
(Section 3.4).

4.3. Explaining errors using the fixed network model

Returning to the types of errors made by participants, we can note
that they do easily map onto various stages of the network (Fig. 16)
based on the details of their RT distributions discussed before. First a
test stimulus can be misclassified and the wrong stream activated. This
generates mainly R or SPACE responses with the normal RT of these
responses.

Another type of error occurs at the stage of action initiation, where
the re-programming from R to SPACE may fail and the R response is
produced in a catch trial. Based on the timing and count of errors in
Fig. 13 and Table 1, we have estimated rates for this error for short
delays (see Fig. 16).

The estimates in Fig. 16 indicate that one can expect masking-in-
duced miss-classification in favour of a “match”, and a weakening of
response re-programming in catch trials.

5. Conclusion

We have described an experiment of fast SR rule encoding and
probed the time course of the process by presenting test stimuli at

Fig. 15. Hypothetical network linking a set functions from repertoires in the
PFC and the PM to perform our SR learning task. The anatomical labels are
speculative (see text). PFC: premotor cortex; PMd: premotor area dorsa; M1:
primary motor cortex.

Fig. 16. Estimated error rates in SR and catch trials, in (a) the unmasked case, and (b) the masked case. The match detection box represents the process of deciding
whether the test stimulus is the same as in the SR rule. The Non-Match detection box does the opposite. The fast process triggers the primed response R. The slow
process needs to re-program the response from R to SPACE.
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various delays after the rule specification.
The system stabilizes 700 ms after the start of the SR rule pre-

sentation, but is functional 250 ms after the start of presentation. The 
data suggest that, while rule encoding progresses, the system is already 
able to process test stimuli, albeit slower in the early stages, and with 
some weakness when faced with brief visual stimuli. I t will be inter-
esting and challenging to design a more detailed dynamical model that 
replicates these properties.

There are puzzling facts for the model to explain: During encoding, 
T processing in SR trials is slowed down by masked stimuli, but not in 
catch trials. However, the encoding cost in unmasked catch trials is 
larger than in SR trials.

The “simple” SR rules used in the experiment actually require a 
complicated task encoding, due to the presence of catch trials. I t ap-
pears that the simplest way for participants to perform the experiment 
is to encode a “parametrized function” at the start of the experiment, 
then use the SR rules as parameters, rather than attempting to re-en-
code the rules anew in each trial. There is a library of functions in the 
brain that are convenient to build a network implementing such a 
parametrized function.

Such a “fixed” network i s consistent with s tream-specific practice 
effects observed in session 1, the characteristics of the observed errors 
and the analysis of RT distributions.
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