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Wave diffraction from multiple truncated cylinders of arbitrary cross sections 1 

Abstract: Many marine structures are supported by piles or caissons which, from a mathematical 2 

point of view, can be assimilated to an array of truncated cylinders of arbitrary cross sections. The 3 

focus of this paper is such an array subjected to harmonic waves of small steepness. We develop 4 

an analytic method based on linear potential flow theory to solve the diffraction problem and 5 

evaluate the excitation forces and moments acting on each cylinder. The water domain is divided 6 

into the interior regions below each cylinder and an exterior region extending to infinity in the 7 

horizontal plane. A series of eigen-functions are applied to express the velocity potential in each 8 

region. The Fourier series method combined with the eigen-function expansion matching method 9 

is used to satisfy the wetted surface body conditions and continuity conditions between adjacent 10 

regions. The analytic model is validated by comparing its results with numerical modelling results 11 

and published data. It is then applied to two truncated cylinders with caisson cross sections, and 12 

results are given for the excitation forces and moments on each cylinder for different values of 13 

incident wave direction and spacing between the cylinders, and for different configurations. 14 

 15 

Keywords: Wave diffraction; Wave excitation force; Wave-structure interaction; Truncated 16 

cylinders; Potential flow; Analytical model 17 

1. Introduction 18 

There are many offshore structures that are composed of an array of cylinders, e.g., marine 19 

drilling platforms, floating airports, bridge pylons, offshore wind farms and wave farms [1]. For 20 

this reason the study of wave diffraction by multiple cylinders has sparked tremendous interest 21 

from engineers and researchers. When the cylinders in the array are far away from one another, the 22 

hydrodynamic interaction between them may be expected to be negligible; in such circumstances, 23 

the wave forces acting on each cylinder in the array are similar to those acting on an isolated 24 

cylinder. 25 

Wave diffraction by a single cylinder with circular cross section has been widely investigated. 26 

As early as 1971, Garrett [2] expanded an incident plane wave using Bessel functions and 27 

conducted an analytic study on the scattering of waves by a circular dock, in which a series of 28 

eigen-functions were applied to express the velocity potential and calculate wave forces. Black, 29 

Mei and Bray [3] applied Haskind’s theorem to evaluate the wave forces acting on a fixed vertical 30 

truncated circular cylinder, which can be either partially immersed in the free surface or resting on 31 

the seabed with its height completely submerged, with only far-field properties. The vertical wave 32 

force acting on the floating truncated cylinder was seen to approach the additional hydrostatic 33 

force when the wave number tended to zero due to the free surface elevation, whereas the vertical 34 

force acting on the bottom-mounted cylinder became negligible as the wave number tended to 35 

zero, for the cylinder had a vanishing water plane area. Wave diffraction from a circular cylinder 36 

in other situations, e.g., located over a cylindrical barrier, floating in water of infinite depth, 37 

located in front of a vertical wall, horizontal and submerged, were extensively investigated [4-15] 38 

and brief reviews of the diffraction problems can also be found in our previous work [11, 12, 16]. 39 

In addition to the case of a cylinder of circular cross section, wave diffraction from a cylinder 40 

of elliptic cross section has also attracted some attention. The exact analytic solution of wave 41 

diffraction by a bottom-mounted, surface-piercing elliptic cylinder was first presented by Chen 42 
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and Mei [17]. In their study, the governing Laplace equation was expressed in elliptic cylindrical 1 

coordinates; therefore, the fluid velocity potential was written in terms of infinite series of 2 

Mathieu functions. This complete solution was considered too complex and costly for engineering 3 

applications[18]. To reduce the time required by the complete solution, Williams [18] presented 4 

two approximate solutions for the diffraction problem and the calculation of the wave excitation 5 

forces and moments on the surface-piercing elliptic cylinder. For a stationary cylinder of elliptic 6 

shape, partially immersed, the hydrodynamic loading was analytically investigated by Chen and 7 

Mei [19] based on linearized shallow water wave theory and adopting a depth-averaged velocity 8 

potential, i.e., the velocity potentials in each region of the fluid domain were bidimensional, 9 

without consideration of the vertical coordinate in the matching procedure (2DH). The 10 

shallow-water theory was also employed by Williams [20] to study diffraction from a stationary 11 

elliptic breakwater either partially immersed or totally submerged and resting on the sea-bed. Later, 12 

these problems were re-investigated without the shallow-water restriction [21]; therefore, in 13 

addition to the angular coordinates, the vertical coordinate was retained in the analysis. The 14 

theoretical solution of the interaction of linearized waves with a submerged horizontal disk of 15 

elliptic cross section can be found in Zhang and Williams [22].  16 

As regards cylinders with other cross-sections, a cosine-type cross-section was investigated 17 

by Mansour, Williams and Wang [23], who presented a leading order analytic solution for a 18 

uniform, bottom-mounted, surface-piercing cylinder based on a perturbation theory, in terms of 19 

the amplitude of the perturbation from a circular cross-section. Their analytic results were found to 20 

be in good agreement with numerical results only for small values of the perturbation amplitude. 21 

More recently, the linear wave diffraction by a vertical, uniform, surface piercing cylinder with an 22 

arbitrary smooth cross-section was analytically solved by Liu, Guo and Li [24], Liu, Guo, Fang, Li, 23 

Hu and Liu [25]. The Fourier series method combined with the Galerkin method were used to 24 

satisfy the wetted surface body conditions and continuity conditions between adjacent subdomains. 25 

Alternatively, Dişibűyűk, Korobkin and Yilmaz [26] solved wave diffraction from a uniform 26 

vertical cylinder of arbitrary cross section by using an asymptotic approach, in which a fifth-order 27 

asymptotic expansion of the velocity potential was substituted in the boundary condition. The 28 

agreement between their theoretical predictions of the hydrodynamic forces and wave run-up and 29 

those from Liu, Guo and Li [24] was shown to be fairly good. 30 

For the majority of offshore structures that can be assimilated to an array of cylinders of 31 

arbitrary cross-sections, in practice, the spacing between the cylinders is typically not large 32 

enough for hydrodynamic interactions to be ignored; it follows that the wave excitation forces and 33 

moments acting on each cylinder are strongly affected by the waves diffracted from the others 34 

[27]. 35 

To analyse the hydrodynamic interaction occurring between multiple circular cylinders, 36 

Kagemoto and Yue [28], Alliney [29] developed an interaction theory, which can be used to 37 

predict wave exciting forces given only the diffraction characteristics of individual members. This 38 

theory was also extended by Yilmaz and Incecik [30], Yilmaz [31] and Siddorn and Eatock Taylor 39 

[32] to solve the problems of wave diffraction and radiation from an array of truncated vertical 40 

circular cylinders. Linton and Evans [33] applied a direct method to wave diffraction problem of 41 

multiple circular uniform cylinders and obtained new formulae for the wave excitation forces and 42 

free-surface elevation close to a particular cylinder. Recently, Zheng and Zhang [34] presented a 43 

theoretical study on a hybrid wave energy converter, in which an analytic model was proposed to 44 
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solve the problems of wave diffraction and radiation from a hollow cylinder and a surrounding 1 

array of solid cylinders. Analytic solutions of the hydrodynamic problems from a hybrid wave 2 

farm consisting of an array of truncated cylinders with and without moonpools were derived as 3 

well [35]. Other studies regarding wave diffraction of circular cylinders can be found in the review 4 

presented by Eatock Taylor [36]. 5 

With regard to an array of elliptic uniform cylinders, Chatjigeorgiou and Mavrakos [37] 6 

presented a semi-analytic model for the hydrodynamic diffraction. In their model, the Mathieu 7 

function addition theorem was adopted and properly extended so that it can be expressed in terms 8 

of the even and odd periodic and radial Mathieu functions. Later, Chatjigeorgiou [38] provided an 9 

analytic solution of hydrodynamic interactions between elliptic and circular uniform cylinders, in 10 

which the circular cylinders were considered as different geometries rather than special cases of 11 

elliptic cylinders with zero elliptic eccentricity. The theoretical model is more comprehensive, 12 

requiring the implementation of both Mathieu and Bessel functions; in exchange, this approach 13 

allows for efficient and accurate computations. Chatjigeorgiou [39] extended the research work by 14 

Chatjigeorgiou and Mavrakos [37] to multiple elliptic truncated cylinders. Chen and Lee [40] 15 

solved wave scattering from an array of four identical elliptical cylinders in a semi-analytical 16 

manner. Both physical (near-trapped mode) and mathematical (fictitious frequency) resonances 17 

were observed in their study. More recently, Zheng, Zhang, Liu and Iglesias [41] presented a 18 

semi-analytic model to solve the problem of wave radiation from cylinders with arbitrary cross 19 

sections oscillating independently in the absence of an incident wave. 20 

To the authors’ best knowledge, there has been no analytic research work reported on wave 21 

scattering from an array of cylinders with arbitrary cross sections – a relevant problem in Ocean 22 

Engineering, and the subject of this paper. More specifically, we focus on wave diffraction from 23 

multiple stationary truncated cylinders partially immersed in the free surface, and propose an 24 

analytic model based on linear potential flow theory to solve the diffraction problem and evaluate 25 

the excitation forces and moments acting on each cylinder. 26 

2. Mathematical model 27 

The problem geometry is illustrated in Fig. 1. An array of N (N≥2) vertical cylinders with 28 

arbitrary cross sections are partially immersed in water of finite depth h. The draft of cylinder n 29 

(n=1,2,…, N) is denoted as dn. To describe the problem clearly, as shown in Fig. 1a, a Cartesian 30 

coordinate system Oxyz is defined with the plane of Oxy coinciding with the still water level 31 

(SWL) and the Oz pointing upwards. The multiple cylinders are subjected to a train of regular 32 

gravity waves of amplitude A and angular frequency ω incoming at angle β to the positive 33 

x-direction. The amplitude A is assumed to be small compared to the wavelength; in other words, 34 

wave steepness is assumed to be small. Apart from the Oxyz system, N cylindrical coordinates are 35 

employed with the origins set inside the cross section of each cylinder at SWL. The cylindrical 36 

coordinate corresponding to cylinder n is denoted as Onrnθnz with the origin On, located at (xn,yn,0) 37 

in the Oxyz system. A point (xn,yn,zn) in the Oxyz system is used as the reference point to calculate 38 

the wave excitation moments acting on cylinder n. The fluid is divided into N+1 regions (Fig. 1b): 39 

the first N regions are the interior regions below each cylinder; Region N+1 denotes the exterior 40 

region, extending to infinity in the horizontal plane. 41 
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  1 
Fig. 1. Definition sketch: (a) plan view; (b) side view 2 

The shape of the cross section of cylinder n can be described in its own cylindrical coordinate 3 

system Onrnθnz as rn=Rn(θn), which represents the radius of any point at the edge of cross section 4 

at θn. In order to describe the unit normal vector at the side surface of cylinder n, Sn function is 5 

introduced as: 6 

 ( ) ( ),n n n n n nS r r R = − , (1) 7 

in which Sn=0 represents the cross section of cylinder n as well, and the unit normal vector 8 

pointing into the water at the side surface in the Onrnθnz system and the Oxyz system can be 9 

written as Eqs. (2a) and (2b), respectively[16, 24, 41]: 10 
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 (2b) 13 

where ( ,r ne , ,ne , ze ) are the unit basis vectors in the Onrnθnz system, and ( i , j , k ) are the unit 14 

basis vectors in the Oxyz system. 15 

Assuming the fluid to be incompressible and inviscid, the irrotational fluid motion excited by 16 

regular waves with small amplitude might be described by using linear flow potential theory and 17 

the velocity potential can be written as φ(x,y,z,t)=Re[Φ(x,y,z)e-iωt]

 

, where t is the time, i is the 18 

imaginary unit, Φ is a complex spatial velocity potential. It follows that both φ and Φ satisfy the 19 

Laplace equation everywhere in the fluid domain. 20 

In the frame of the linear flow theory, the spatial velocity potential Φ can be separated into 21 

contributions from the incident wave field and the diffracted field as:  22 

 I D  = + , (3) 23 

where ΦI and ΦD represent the incident wave spatial potential and the diffracted one, respectively. 24 

Both of them satisfy the Laplace equation. 25 

Generally, the velocity spatial potential for the undisturbed incident waves is well known and 26 
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ΦI in the Onrnθnz system can be written as [34, 35]: 1 

 
( )

( )
( ) ( )00 i cos sin ii

I 0

0

coshi
e i e e
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n n n
k x y mm m

m n

m
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
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=−

+  = −  , (4) 2 

where k0 is the wave number satisfying the dispersion relation ω2=gk0tanh(k0h), in which g is the 3 

gravity acceleration; Jm is the Bessel function of order m. 4 

The boundary conditions for ΦD can be written as follows: 5 

1) The linear free surface condition: 6 

 

2

D
D 0
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− =


,   0z =  and n nr R  (5) 7 

2) The non-penetrating condition on the seabed: 8 

 D 0
z


=


,   z h= −  (6) 9 

3) The surface condition at the wetted surface of each cylinder: 10 

 D I

z z
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= −

 
,   nz d= −  and 0 n nr R   (7) 11 

 D I

n n

  
= −

 
,   0nd z−    and n nr R=  (8) 12 

4) The radiation condition at infinity: 13 

 
D
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3 Solution to diffracted potentials 15 

The diffracted spatial potential in Region n is denoted as ΦD,n. The method of separation of 16 

variables is applied in each region in order to obtain expressions for the unknown diffracted 17 

potentials. 18 

3.1 Diffracted spatial potentials in different regions 19 

1) Region n (n=1,2, …, N) 20 

The diffracted spatial potential in Region n can be written in the Onrnθnz system as 21 

 ( ) ( ) ( ) ( ) iD D

D D ,p ,0 , , ,

1

, , cos e n
m m,n ,n

,n n n ,n m n m l m n l n n l

m l

r z A r A I r z h
    

 

=− =

 
 = + + +  

 
  ,(10) 22 

where 
D

,

,n

m lA  are unknown coefficients to be solved in Section 3.2; mI  is the modified Bessel 23 

function of first kind and order m; ,n l  is the eigenvalue which is given by  24 

 ,

π
n l

n

l

h d
 =

−
， l=0, 1, 2, 3,…, (11) 25 

D ,p,n  is a particular solution, D ,p I,n = − . 26 
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2) Region N+1 1 

In Region N+1, i.e., the exterior domain, the diffracted spatial potential can be decomposed 2 

into the contributions from the waves diffracted from the N cylinders: 3 

 
D,e

D, 1

1

N

N n

n

 +

=

= , (12) 4 

in which 
D,e

n  represents the diffracted potential corresponding to the waves travelling outwards 5 

from cylinder n and can be written in terms of eigen-function expansion in the Onrnθnz system as: 6 

 ( ) ( )
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where 8 

 ( ) ( )1 2

0 0 0coshZ z N k z h−= +   ;  ( ) ( )1 2 cosl l lZ z N k z h−= +   ;   (14) 9 
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,n
lmBD
,  are the unknown coefficients to be solved in Section 3.2; mH  is the Hankel function of 11 

first kind of order m; mK  is the modified Bessel function of second kind of order m; lk  is the 12 

eigenvalue which is given by 13 

 ( )hkgk ll tan2 −= ,     l=1,2, 3, … (16) 14 

With the employment of Graf’s addition theorem for Bessel functions [11, 12, 28, 32, 34, 42], 15 
D,e

j  can be expressed in different cylindrical coordinate systems, and when rn≤Rjn, Eq. (12) can 16 

be rewritten in the Onrnθnz system as: 17 
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3.2 Method of computation for unknown coefficients 19 

The unknown coefficients in Eqs. (10), (13) and (17) can be determined by using the 20 

conditions of continuity of pressure and mass flux at rn=Rn (n=1,2,…, N): 21 

1) Continuity of pressure at the boundary Sn=0: 22 

 D, 1 D,0 0
,

n n
N n nS S
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= −   − .  (18) 23 

2) Continuity of mass flux at the boundary Sn=0: 24 
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which, with the employment of Eq. (2a), can be further expressed in the frame of the local 2 

cylindrical coordinate system Onrnθnz as 3 
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After inserting the expressions of the wave diffracted spatial potential as given in Eqs. (10) 5 

and (17) into Eqs. (18) and (19b), the terms with rn and ∂Sn/∂θn at Sn=0 are both found to be 6 

dependent on θn, and can be expanded into a Fourier series as follows [41]: 7 
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n

m m qR nn
n n m q

qn S

S
m r m r f






+

=−
=

 
+ = 

 
        (20f) 13 

for n=1…N, where the Fourier coefficients on the right-hand side of Eqs. (20a)~(20f), represented 14 

by  n,q for convenience, can be obtained from 15 

 ( )
π

i

, ,
π

1
e d

2π
nq

n q n q n n

 −

−
 =  ,  (21) 16 

in which Ψn,q denotes the θn dependent items as given at the left side of Eqs. (20a)~(20f). 17 

The orthogonal properties of the functions cosnθ, sinnθ, and Zl(z) can also be used by 18 

multiplying Eqs. (18) and (19) with ( ) ( )i

,e cosn

n nz h h d


−  + −   and 
i

e n Z h




−
, 19 
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respectively, on both sides and integrating with respect to θ and z, as follows: 1 

 

( )
( )

( )
( )

π , i

D, +1 0
π

π , i

D, 0
π

cos
, , d e d

cos
, , d e d

n
n

n

n
n

n

d n

N n n S n
h

n

d n

n n n S n
h

n

z h
r z z

h d

z h
r z z

h d

 

 


  


  

−
−

=
− −

−
−

=
− −

  + 
 

−  

  + =  
−  

 

 

,   (22) 2 

 

( ) ( )

( ) ( ) ( ) ( )

π 0
D, 1 i

0
π

π 0
D, iI

0 0
π

, ,
d e d

, , , ,
d d e d

n

n

n
n

n n
n

N n n

S n
h

d
n n n n n

S S n
h d

Z zr z
z

n h

Z z Z zr z r z
z z

n h n h

 

  

 


   


+ −

=
− −

−
−

= =
− − −

 
 

 

  
= − 

  

 

  

, (23) 3 

in which τ is an integer which varies from minus infinity to plus infinity, and ζ is an integer 4 

varying from zero to plus infinity. 5 

Substituting the expressions for the wave diffracted spatial potential in Eqs. (10) and (17),  6 

inserting the Fourier coefficients in Eqs. (20a)~(20f) into Eqs. (22) and (23), and making some 7 

rearrangements, we have 8 

 

( ) ( )

( ) ( )0

1, D D 2, D ,

, , , , , , , , , , ,

0 1 0

i cos sin i ,

0, ,0,

i
e i en n

N
n nn ,n ,n n , j n j

m m m l l m l m l l m l

m m l j m l
j n

k x yn m m J n

m m

m

A B L B L T

gA
L f

      

  

 

 



    

=− =− = = =− =



+ −

−

=−

− + +

=

     



,  (24) 9 

 

( ) ( )

( )
( )0

D 3, D 4, D ,

, , , , , , , , , ,

0 1

i cos sin0, i ,

,0,

0

0

i
e i e

0

n n

N
n,n n ,n n , j n jn

m l l m l m m m m

m l m j m
j n

k x y m m J n

m m

m

h d
Z A L B B T

h

gA
f

Z

        

  



 





   

=− = =− = =−



+ −

−

=−

−
− + +

=

    



,  (25) 10 

where  11 

 

,

, ,
1,

, , ,

, ,

, 0

1
, 1,2,3,...

2

R n

m m
n

m I n

m m

f

f

 

 

 






−

−

 =


= 
=



 

,

,0,2,

, , ,

, ,

, 0

, 1,2,3,...

H n

m mn

m l K n

m l m

f l

f l








−

−

 =
= 

=

,  (26) 12 

 

( ) ( ) ( )

( )

( ) ( ) ( )

( ) ( )

( ) ( ) ( )

( ) ( )

,

,

0 0

2 2 2 2

0 0

2 2 2 2

cos1
d

0

1 sinh
0; 0,1,2

cosh

1 sin
1,2,3 ; 0,1,2

cos

nd l nn

l
h

n l

n n

n

n l l n

n l l

Z z z h
L z

h d Z

h d k k h d
l

h d k k h

h d k k h d
l

h d k k h












 


 

−

−

 + =
−

 − − −   = =
  − +

  
= 

− − −    = =
 − −  



,  (27) 13 
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( ) ( ) ( )

( ) ( )

i,

0 ,0,

,

, ,
i,

, ,

1 e , 0

e , 1,2,3,...

jn nj

jn nj

m m mJ n

m m jn m m

mn j

m l
m mI n

m m l jn m l m

m

H k R f l

T

K k R f l

 




 




 −

  − −

=−


−

  − −

=−


− =


= 
 =





,  (28) 1 

 

,

,0,3,

, , ,

, ,

, 0

, 1, 2,3,...

R n

m mn

m l I n

m l m

f l

f l








−



−

 =
= 

=

 
( )

( )

,

,0,

04,

, , ,

, ,

, 0
0

, 1,2,3,...
0

H n

m m

n

m K n

m m

f

Z

f

Z



 

 











−



−


=


= 


=



.  (29) 2 

 
( )

( ) ( ) ( )

( )
( ) ( )

i,

0 ,0,

0,

, ,
i,

, ,

1
1 e , 0

0

1
e , 1,2,3,...

0

jn nj

jn nj

m m mJ n

m m jn m m

mn j

m l
m mI n

m m l jn m l m

ml

H k R f l
Z

T

K k R f l
Z

 




 




 −

  − −
=−


−

  − −
=−


− =


 = 

 =






,  (30) 3 

We truncate (2M+1) terms (m=-M,…,0, …, M) and (L+1) terms (l=0,1, …, L) in Eqs. (10), 4 

(13), (24) and (25) and take (τ=-M,…,0, …, M) and (ζ=0,1, …, L) in Eqs. (24) and (25) as well, 5 

thus a 2N(2M+1)(L+1)-order complex linear equation matrix is obtained, which can be used to 6 

calculate the same number of unknown coefficients 
D,

,

n

m lA  and 
D,

,

n

m lB . In the following analytic 7 

computations, M=15 and L=8 are taken so as to obtain accurate results. 8 

4 Wave excitation forces and moments 9 

The hydrodynamic pressure in the flow domain is given by the linearized Bernoulli equation, 10 

p=-ρ∂Re[(ΦI+ΦD)e-iωt]/∂t= ρRe[iω(ΦI+ΦD)e-iωt], where ρ represents the water density. Therefore, 11 

the generalized excitation force on cylinder n in Mode j (j=1~6 represent surge, sway, heave, roll, 12 

pitch and yaw, respectively) can be calculated from 
( ) i

e,Re e
j t

nF − 
 

, where 13 

 
( ) ( )e, I Di d

n

j

n j
S

F n s  = − + , (31) 14 

in which Sn is the wetted surface of cylinder n; n1=nx, n2=ny n3=nz, n4=-(z-zn)ny+(y-yn)nz, 15 

n5=(z-zn)nx-(x-xn)nz, n6=-(y-yn)nx+(x-xn)ny, knjninn zyx


++=  is the unit normal vector directed 16 

into the fluid domain at the cylinder surface, as given in Eq. (2b). 17 

The analytic expressions for the diffracted potentials of the whole computational domain are 18 

obtained in Section 3, so the wave excitation forces and moments can be calculated directly from 19 

Eq. (31). 20 

5 Model validation 21 

Multiple caissons arise in many offshore projects, such as floating bridges [43] and mobile 22 

offshore bases [1]. In this section, the case of two caissons (Fig. 2) is used for validating the 23 

analytic model of wave diffraction from multiple truncated cylinders of arbitrary cross sections. 24 

Located in water with a depth of h=20 m, the two caissons have the same dimensions and a draft 25 

dn=5 m. They are deployed in parallel at a distance from each other e=20 m, and are subjected to 26 

regular waves propagating at an angle β=π/6. 27 
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 1 

Fig. 2.  Top view of the two caissons, case study used for validation. 2 

 3 

After solving wave diffraction problem from these caissons, the wave excitation forces and 4 

moments obtained are then normalized as follows: 5 

 ( )

( )
e,

e,

2, 1,2,3
,

3, 4,5,6

j

nj

n q

F j
F q

jgAh

=
= = 

=

, (32a) 6 

 
( ) ( )
e, e,arg

j j

n nF = . (32b) 7 

Hereinafter, k0 is denoted as k for simplicity, and the nondimensional wave frequency kh is used. 8 

Figures 3 and 4 present a comparison of the present analytic results of wave excitation 9 

forces/moments acting on the two caissons (see Fig.2) for different wave frequencies (0<kh<5.0) 10 

with the numerical results from BEM-based software, ANSYS-AQWA [44]. Figs. 3a and 3b show 11 

the wave excitation forces acting on Caisson 1 in terms of dimensionless amplitude and phase 12 

angle, respectively. The wave excitation forces acting on Caisson 2 are ploted in Figs. 3c and 3d. 13 

Simiarly, the excitation moments loading on Caissons 1 and 2 are illustrated in Figs. 4a~4b and 14 

Figs. 4c~4d, respectively. 15 
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 1 

Fig. 3.  Comparison of the present analytic results of wave excitation forces acting on the two 2 

caissons with the numerical results based on BEM for  =π/6 and e/h=1.0: (a)
( )

e,1

n
F , n=1,2,3; (b) 3 

( )
e,1

n
 , n=1,2,3; (c) 

( )
e,2

n
F , n=1,2,3; (d)

( )
e,1

n
 , n=1,2,3. [Lines: analytic results; symbols: numerical 4 

results]. 5 

 6 
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 1 

Fig. 4.  Comparison of the present analytic results of wave excitation moments acting on the two 2 

caissons with the numerical results based on BEM for  =π/6 and e/h=1.0: (a)
( )

e,1

n
F , n=4,5,6; (b) 3 

( )
e,1

n
 , n=4,5,6; (c) 

( )
e,2

n
F , n=4,5,6; (d)

( )
e,1

n
 , n=4,5,6. [Lines: analytic results; symbols: numerical 4 

results]. 5 

 6 

It is shown that the analytic results of the excitation forces and moments acting on each 7 

caisson in all modes, i.e., surge, sway, heave, roll, pitch and yaw, fully agree with the numerical 8 

results in terms of both dimensionless amplitude and phase angle. This excellent agreement 9 

validates the present analytic model. 10 

In addition to the two caissons with a quasi-elliptical cross section, a square array of four 11 

identical elliptical cylinders studied analytically by Chen and Lee [40] is selected to validate the 12 

present analytic model. All cylinders are fixed on the seabed mounted upward to the free surface. The 13 

half lengths of the major and the minor axes of each elliptical cylinder are h and 0.5h, respectively. 14 

The incident wave direction is β=0. In the present computation, dn= 0.98h (n=1, 2, 3, 4) was 15 

adopted to represent that the cylinders were bottom-mounted. As shown in Fig. 5, the present 16 

results of the surge wave excitation forces are in excellent agreement with those in [40]. 17 
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  1 

Fig. 5.  Comparison of the present analytic results of the surge wave excitation forces acting 2 

on each cylinder of an array of four identical elliptical cylinders with the published data [40] for 3 

β=0. [
( )0

e,1F  denotes the surge wave excitation force acting on the cylinder-1 when it is in 4 

isolation] 5 

6 Results and discussion 6 

In this section, the validated analytic model is applied to investigate the role of the incident 7 

wave direction, spacing between caissons and configuration angle in the hydrodynamic forces and 8 

moments acting on the two caissons depicted in Fig. 2. 9 

6.1 Effect of incident wave angle 10 

The two caissons suffering from incoming regular waves with five different incident wave 11 

angles, i.e., = 0, π/6, π/4, π/3 and π/2, are tested. Figure 6 shows the variations of the excitation 12 

forces acting on each caisson in surge, sway and heave modes with kh for different values of  and 13 

e/h=1.0. Similarly, the results of the excitation moments in roll, pitch and yaw modes are 14 

presented in Fig. 7. 15 

Since both caissons have the same dimensions and are arranged in parallel symmetrically, the 16 

results of the excitation forces and moments acting on them in any mode should be the same in 17 

terms of amplitude when  = π/2. This is borne out by the results in Figs. 6 and 7. 18 

For  = π/2, the surge excitation force, pitch and yaw excitation moments acting on the 19 

isolated induvidual caisson vanish. By contrast, when two caissons are deployed in proximity (Fig. 20 

2), the surge excitation force, and the pitch and yaw excitation moments acting on each caisson 21 

may be non-zero due to the hydrodynamic interaction between the caissons. Note that for kh=3.6 22 

and =π/4, 
( )1

e,1F  and 
( )1

e,2F  are 0.056 and 0.282, respectively, implying that, under certain 23 

circumstances, the wave excitation forces acting on the leeward caisson can be larger than those 24 

acting on the windward caisson.  25 

When incident waves propagate along the x-axis, i.e., =0, due to the symmetrical property 26 

of the two caissons about the plane of y=0, 
( )2

e,nF , 
( )4

e,nF  and 
( )6

e,nF  all vanish (Figs. 6c, 6d, 7a , 27 

7b, 7e and 7f). For kh<3.5, the larger the , the larger the 
( )2

e,1F  and 
( )2

e,2F . This also applies to 28 

the effect of  on 
( )4

e,1F  and 
( )4

e,2F  for kh<3.5. 29 

 might play opposite roles on 
( )3

e,1F  for different wave frequencies. For kh<1.0, a larger  30 

results in a smaller 
( )3

e,1F . Whereas for 1.5<kh<1.8, a larger 
( )3

e,1F  is obtained for a larger . For 31 

2.0<kh<5.0, at least one peak of 
( )3

e,1F -kh occurs for any  studied, except =π/2. The kh 32 
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corresponding to the peaks is rather dependent on . As a comparison, althouth peaks also appear 1 

for 
( )3

e,2F -kh at 2.0< kh <5.0, the kh values where peaks occur are rather independent of . 2 

When the caissons are subjected to oblique waves, i.e., =π/6, π/4 and π/3, 
( )4

e,1F  and 
( )4

e,2F  3 

are found to vanish for certain wave conditions (Figs.7a and 7b). Such circumstances are welcome 4 

from the standpoint of offshore structures’ stability. It may be inferred that the larger the , the 5 

larger the kh where 
( )4

e,1F  and 
( )4

e,2F  vanish. 6 

The effect of  on pitch moments is found to be similar to that on surge forces (Figs.7c and 7 

7d). This may be partially due to the position of the rotational reference point, which is located at 8 

SWL, implying that the arm of the surge force is generally larger than the arm of the heave force; 9 

therefore, the pitch moment is dominated by the part of the surge force acting on the side walls. 10 

Although 
( )6

e,1F (
( )6

e,2F ) is excited for =π/2 due to hydrodynamic interaction between the 11 

caissons, its value is rather small (Figs.7e and 7f). 
( )6

e,1F (
( )6

e,2F ) are mainly excited in oblique 12 

incoming waves. For kh <3.8, 
( )6

e,1F  and 
( )6

e,2F  for =π/4 are both larger than the other cases with 13 

different value of .  14 
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 1 

Fig. 6. Normalised wave excitation forces acting on the two caissons vs. kh for five incident wave 2 

angles:  =0, π/6, π/4, π/3 and π/2 with e/h=1.0: (a) 
( )1

e,1F ; (b) 
( )1

e,2F ; (c) 
( )2

e,1F ; (d) 
( )2

e,2F ; (e) 3 
( )3

e,1F ; (f) 
( )3

e,2F . 4 

 5 
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 1 

Fig. 7. Normalised wave excitation moments acting on the two caissons vs kh for five incident 2 

wave angles  =0, π/6, π/4, π/3 and π/2 with e/h=1.0: (a) 
( )4

e,1F ; (b) 
( )4

e,2F ; (c) 
( )5

e,1F ; (d) 
( )5

e,2F ; (e) 3 
( )6

e,1F ; (f) 
( )6

e,2F . 4 

6.2 Effect of spacing between caissons 5 

To study the influence of the spacing between the caissons, e, we consider the same two 6 

caissons deployed with four different spacings, i.e., e/h=0.5, 1.0, 1.5 and 2.0, suffering from 7 

incoming waves with =π/6 are studied. In addition, as a comparison, wave diffraction from an 8 

individual caisson isolated in open sea is also analytically solved by using the method of [25]. The 9 

isolated caisson case is equivalent to the two-caisson case with an extremely large spacing 10 

between them, i.e., e/h=∞, that the hydrodynamic interaction is vanishing. For such case, 11 
( )

e,1

i
F =

( )
e,2

i
F , i=1,2,…,6. 12 
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Figures 8 and 9 illustrate the results of excitation forces and moments acting on the caissons, 1 

respectively. As shown in Fig. 8a, when the two caissons are placed far away from each other, i.e., 2 

the isolated caisson case, the 
( )1

e,1F (
( )1

e,2F )-kh is a one peak curve. While when they are arranged 3 

close to each other, e.g., e/h =0.5~2.0, affected by the reflected waves from Caisson 2, frequency 4 

response of the surge excitation force acting on Caisson 1, i.e., 
( )1

e,1F , is found to oscillate around 5 

the 
( )1

e,1F -kh curve of isolated caisson case. It means that for different wave conditions, 
( )1

e,1F  can 6 

be either strengthened or weakened by the hydrodynamic interaction between the caissons. As e/h 7 

turns larger, strengthening and weakening effects of the hydrodynamic interaction on 
( )1

e,1F  can 8 

switch for a smaller change of kh. Different from 
( )1

e,1F , thanks to the sheltering effect of Caisson 9 

1, 
( )1

e,2F  is found weakened by hydrodynamic interaction for most wave conditions within kh < 10 

5.0 (Fig. 8b). For 3.0 < kh < 5.0, 
( )1

e,2F  with e/h=0.5 is obviously smaller than the other cases. 11 

As kh increases from 0 to 2.5, 
( )2

e,1F  increases from 0 to 0.11 and there is nearly no influence of 12 

e on 
( )2

e,1F  for these wave frequencies (Fig. 8c). As kh keeps increasing from 2.5 toward 5.0, 13 
( )2

e,1F  for the isolated caisson case stays at a flat level of 
( )2

e,1F =1.1. Whereas for the two caissons 14 

close to each other, fluctuations of the 
( )2

e,1F -kh curve around that of the isolated caisson case are 15 

observed. The smaller the e/h, the stronger fluctuations occur. These fluctuations are not found for 16 

the sway excitation force acting on Caisson 2 (Fig. 8b). It should be noted that for kh <4.0, 17 

although Caisson 2 is located at the lee side of Caisson 1, 
( )2

e,2F  is strengthened by the 18 

hydrodynamic interaction. The smaller the e/h, the larger 
( )2

e,1F  is obtained. 19 

Similar to the effect of e on 
( )1

e,1F , the 
( )3

e,1F -kh curves representing two-caisson cases are also 20 

observed to oscillate around the curve of isolated caisson case (Fig.8e). As e/h turns larger, 21 

strengthening and weakening effects of the hydrodynamic interaction on 
( )3

e,1F  switch more 22 

frequently for the same range of kh. It should be noted that generally the hydrodynamic interaction 23 

has opposite effects on 
( )1

e,1F  and 
( )3

e,1F , e.g., for the case with e/h =1.5 at kh =3.0, 
( )1

e,1F  is 24 

strengthened whereas 
( )3

e,1F  is weakened. The heave excitation force acting on Caisson 2, i.e., 25 
( )3

e,2F  (Fig. 8f) is affected by e in a similar way as 
( )1

e,2F  is influenced (Fig. 8b). 26 

Both 
( )4

e,1F  and 
( )4

e,2F  vanish around kh =3.4, regardless of the value of e/h (Figs.9a and 9b). 27 

For kh <3.4, 
( )4

e,1F  is not affected by e, neither. Influence of e on 
( )4

e,1F  mainly happens at 4.0< 28 

kh <5.0, where 
( )4

e,1F  in the case with e/h =0.5 is larger than those for the other cases. The results 29 

as given in Fig.9b show that 
( )4

e,2F  is approximately not influenced by e unless e is rather small, 30 

e.g., e/h =0.5, for which a slightly larger 
( )4

e,2F  is obtained for kh <3.4, whereas an obvious 31 

smaller 
( )4

e,2F  is obtained for kh >3.5. 32 

Effect of e on 
( )5

e,1F  and 
( )5

e,2F  (Figs.9c and 9d) is rather similar to that on 
( )1

e,1F  and 
( )1

e,2F  33 

(Figs. 8a and 8b). Hence the description is not repeated here. The yaw moments acting on each 34 

caisson, especially those on Caisson 1, are found sensitive to e for kh >2.5 (Figs.9e and 9f).  35 

 36 
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 1 

Fig. 8. Normalised wave excitation forces acting on the two caissons vs kh for four spacing 2 

e/h=0.5, 1.0, 1.5 and 2.0, together with the isolated case with  =π/6: (a) 
( )1

e,1F ; (b) 
( )1

e,2F ; (c) 3 
( )2

e,1F ; (d) 
( )2

e,2F ;(e) 
( )3

e,1F ;(f) 
( )3

e,2F . 4 

 5 
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 1 

Fig. 9. Normalised wave excitation moments acting on the two caissons vs. kh for four spacings, 2 

e/h=0.5, 1.0, 1.5 and 2.0, together with the isolated case with  =π/6: (a) 
( )4

e,1F ; (b) 
( )4

e,2F ; (c) 3 
( )5

e,1F ; (d) 
( )5

e,2F ; (e) 
( )6

e,1F ; (f) 
( )6

e,2F . 4 

 5 

6.3 Effect of layout 6 

In practice, different configurations of the caissons, e.g., side by side and staggered, will be 7 

encountered during the transport and installation process. In this subsection, the layout with the 8 

two caissons in parallel at the same distance from their centers is considered. As shown in Fig. 10, 9 

the only variable parameter in the different configurations is the angle of the line connecting the 10 

caisson centers with the x-axis, which is defined as the configuration angle . 11 
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 1 

Fig. 10.  Definition of the configuration angle . 2 

 3 

The two caissons with  =0, π/6, π/4, π/3 and π/2 subjected to incident waves with β=π/6 are 4 

analytically studied. Figures 11 and 12 present the comparison of the results of wave excitation 5 

forces and moments, respectively.  6 

As  increases from 0 to π/2, the 
( )1

e,1F -kh curve changes from double-peaked curve into 7 

single-peaked one (Fig.11a). With the increase of , 
( )1

e,1F  at kh =2.0 and 4.1 turn smaller and 8 

smaller, whereas 
( )1

e,1F  at kh=3 gets larger and larger, revealing that opposite effects of  on 
( )1

e,1F  9 

might happen for different wave conditions. While for all the wave conditions examined, except 10 

few wave frequencies around kh=4.0, a larger  generally results in a larger 
( )1

e,2F  (Fig.11b). 11 

In the five cases with  increasing from 0 to π/2, the value of 
( )2

e,1F  could change a lot for 12 

some specified wave conditions (Fig.11c). Take kh=2.6 as an example, 
( )2

e,1F  for =π/4 is only 13 

0.082, whereas for =π/2, 
( )2

e,1F  reaches 0.154, which is approximately two times as large as that 14 

when =π/4. Similar significant difference of 
( )2

e,2F  induced by variation of  can be observed for 15 

most wave conditions within 2.0<kh<5.0 (Fig.11d). Among the five cases with different values of 16 

, the cases with =π/2 and π/3 give the maximum and minimum values of 
( )2

e,2F , respectively, 17 

for most wave conditions. For kh ranging from 3.0 to 5.0, the maximum value of 
( )2

e,2F  is always 18 

two times as large as that of the minimum approximately. 19 

For 1.2<kh<2.1, 
( )3

e,1F  with =π/2 is the largest among the result in the five cases (Fig.11e). 20 

While for 2.4< kh <3.5, on the contrary, 
( )3

e,1F  with =π/2 turns to be the smallest one. As a 21 

comparison, 
( )3

e,2F  is maximized and minimized when =π/2 and =0, respectively, for any wave 22 

conditions at 1.9<kh<5.0 (Fig.11f). 23 

For 1.0<kh<1.7, 
( )4

e,1F  with =π/2 is much smaller than any of the other four cases, whereas 24 

for kh>2.2, 
( )4

e,1F  of such case turns to be the largest one (Fig.12a). Whatever the value of  is, a 25 

minimum value of 
( )4

e,1F  occurs around kh=3.3. While the kh corresponding to the minimum 26 

value of 
( )4

e,2F  is a bit more sensitive to the variation of , e.g., the kh corresponding to the 27 

minimum of 
( )4

e,2F  for =π/3 and π/2 are 3.0 and 3.6, respectively. For kh ranging from 1.3 to 3.1, 28 
( )4

e,2F  for the cases with =π/3 and π/2 are always the smallest and largest ones, respectively, 29 

among the five cases. 30 

The frequency response curves of 
( )5

e,1F  and 
( )5

e,2F  for different  (Figs. 12c and 12d) are 31 
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found to be similar to those of 
( )1

e,1F  and 
( )1

e,2F  in Figs. 11a and 11b. The discussion of the effect 1 

of  on 
( )1

e,1F  and 
( )1

e,2F  can be applied to 
( )5

e,1F  and 
( )5

e,2F  as well. 2 

Figures 12e and 12f illustrate the results of 
( )6

e,1F  and 
( )6

e,2F . For kh>2.5, compared with the 3 

other four cases, 
( )6

e,2F  with =0 is much larger and deserves more attention for stability.  4 

 5 

 6 

Fig. 11. Normalised wave excitation forces acting on the two caissons vs kh for different 7 

configuration angle  =0, π/6, π/4, π/3 and π/2 with β=π/6: (a) 
( )1

e,1F ; (b) 
( )1

e,2F ; (c) 
( )2

e,1F ; (d) 8 
( )2

e,2F ; (e) 
( )3

e,1F ; (f) 
( )3

e,2F . 9 

 10 
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 1 

Fig. 12. Normalised wave excitation moments acting on the two caissons vs kh for different 2 

configuration angle  =0, π/6, π/4, π/3 and π/2 with β=π/6: (a) 
( )4

e,1F ; (b) 
( )4

e,2F ; (c) 
( )5

e,1F ; 3 

(d)
( )5

e,2F ; (e) 
( )6

e,1F ; (f) 
( )6

e,2F . 4 

6.4 Effect of the shape of cross section 5 

To examine the effect of the shape of the cross section of the cylinders, we consider two 6 

identical caissons with a similar deployment to Fig. 2, and with the same horizontal distance 7 

between the centroids of 30 m, but with different cross sections. More specifically, four cross 8 

sections are examined (Fig. 13a; only one caisson is plotted), in which κ and κ’ represent the ratios 9 

of the lengths of the two straight edge sections relative to the corner radius, R0 (Fig. 13b). All 10 

these cross sections have the same area. Note κ’ is set to zero unless otherwise specified. As κ 11 
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increases from 0, the cross section evolves from circular into quasi-elliptical with its major axis in 1 

parallel with the y-axis. The larger the κ, the slenderer the shape. The exact size of the cross 2 

section for the case κ=2 can be found in Fig. 2. For κ=κ’=2, the cross section turns into a square 3 

with circular corners. The caisson draft of all these four cases dn=5 m, water depth h=20 m, and 4 

incident wave direction β =π/6. 5 

 6 

Fig. 13.  (left) Schematic of the four shapes of cross section; (right) Definition of κ and κ’. 7 

 8 

Figure 14 shows the variation with kh of the excitation forces acting on each caisson in surge, 9 

sway and heave modes for different shapes of cross section. Results of the excitation moments 10 

acting on each caisson in roll, pitch and yaw modes are given in Fig. 15.  11 

Since the caissons in the case κ=2 are the slenderest among the four cases, the wave 12 

excitation forces/moments acting on each caisson in this case in surge, pitch and yaw modes are 13 

the largest among the case studies for the majority of the wave frequencies tested, and the wave 14 

excitation forces in the sway mode are the smallest. Similar curves representing the surge and 15 

heave wave excitation forces, together with the pitch excitation moment acting on each caisson for 16 

cases κ=0 and κ=κ’=2 are observed (Figs. 14a, 14b, 14e, 14f, 15c and 15d). Although the length of 17 

the caissons in the case κ=κ’=2 along the x-axis is smaller than the case κ=0, 
( )2

e,1F  and 
( )2

e,2F  for 18 

case κ=κ’=2 are the largest for all the wave frequencies tested (Figs.14 c and 14d). In long waves, 19 

e.g., kh<2.0, the wave excitation forces acting on each caisson in heave mode are nearly 20 

independent of the shape of the cross sections with the same area (Figs. 14e and 14f). For 21 

2.0<kh<3.8 a larger 
( )3

e,1F  can be obtained for the case with a larger κ and κ’=0. 22 

As shown in Figs.15a and 15b, 
( )4

e,1F  and 
( )4

e,2F  for cases κ=1 and 2 vanish for certain wave 23 

conditions. As a comparison, 
( )4

e,1F  and 
( )4

e,2F  for cases κ=0 and κ=κ’=2 never vanish for the 24 

entire range of wave frequencies tested. Moreover, 
( )4

e,1F  and 
( )4

e,2F  for case κ=κ’=2 are larger 25 

compared to case κ=0 for the whole range of computed wave conditions. As expected, the yaw 26 

excitation moments vanish for circular caissons, i.e., case κ=0 (Fig. 15e and 15f). 27 
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 1 

Fig. 14.  Normalised wave excitation forces acting on the two caissons vs. kh for four shapes of 2 

cross section: (a) 
( )1

e,1F ; (b)  
( )1

e,2F ; (c) 
( )2

e,1F ; (d) 
( )2

e,2F ; (e) 
( )3

e,1F ; (f) 
( )3

e,2F . 3 

 4 
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 1 

Fig. 15.  Normalised wave excitation forces acting on the two caissons vs. kh for four shapes of 2 

cross section: (a) 
( )4

e,1F ; (b)  
( )4

e,2F ; (c) 
( )5

e,1F ; (d) 
( )5

e,2F ; (e) 
( )6

e,1F ; (f) 
( )6

e,2F . 3 

7 Conclusions 4 

In this paper we developed an analytic model for the problem of wave diffraction from 5 

multiple truncated cylinders with arbitrary cross sections. Assuming the cylinders are subjected to 6 

regular waves of small steepness, linear potential flow theory is applied in the analytic model. The 7 

whole water domain is divided into interior regions below each cylinder and an exterior region 8 

representing the rest of the water domain. On this basis, the diffracted spatial velocity potential in 9 

these regions can be written as series of eigen-functions. The Fourier series method combined 10 

with the eigen-function expansion matching method are then used to satisfy the wetted surface 11 

body conditions and continuity conditions between adjacent regions, and to determine the 12 

unknown coefficients of the expressions of the diffracted spatial potential. Excellent agreement is 13 

found between the analytic results of wave excitations forces and moments and the numerical 14 

results obtained from a BEM-based code and the published data as well, which validates the 15 

analytic model. The model is then applied to study wave diffraction from two caissons and to 16 
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explore the effect of the incident wave angle, spacing between two caissons and configuration 1 

angle on the wave excitation forces and moments. Wave diffraction from the two identical 2 

caissons with some other shapes of cross section are also examined. The following conclusions 3 

may be drawn. 4 

For two parallel caissons with the same dimensions located in a row, when incident waves 5 

propagate along the channel between them, i.e.,  = π/2, the surge excitation force, pitch and yaw 6 

excitation moments acting on each caisson are triggered by the hydrodynamic interaction between 7 

the caissons. For different wave frequencies, changing the incident wave angle might play 8 

opposite roles, i.e., strengthening and weakening roles, on 
( )3

e,1F . For kh <3.8, the yaw excitation 9 

moments on both caissons for =π/4 are larger than in the other cases (with different values of ). 10 

Frequency responses of the surge, sway and heave excitation forces and also the pitch and 11 

yaw moments acting on Caisson 1 are found to oscillate around the 
( )

e,1

i
F -kh curve of isolated 12 

caisson case. This can be explained by the strengthening and weakening effects of the 13 

hydrodynamic interaction. As the spacing between the caissons increases, strengthening and 14 

weakening effects alternate at smaller intervals of kh.  15 

As  increases from 0 to π/2 with  = π/6, the 
( )1

e,1F -kh and 
( )5

e,1F -kh curves change from 16 

double-peaked curves into single-peaked ones. With the increase of , opposite effects of  on 17 
( )1

e,1F  and 
( )5

e,1F  might happen for different wave conditions. For most wave conditions, the cases 18 

with =π/2 and π/3 give the maximum and minimum values of 
( )2

e,2F  among the cases with five 19 

different value of , respectively. The maximum value of 
( )2

e,2F  can be twice as large as that of 20 

the minimum for kh> 3.0. Whatever the value of  is, a minimum value of 
( )4

e,1F  occurs around 21 

kh=3.3. For kh ranging from 1.3 to 3.1, 
( )4

e,2F  is always the minimum and maximum for =π/3 22 

and π/2, respectively, among the five cases. For short waves, e.g., kh>2.5, 
( )6

e,2F  with =0 is 23 

much larger than in the other four cases, and it deserves more attention for stability. 24 

The wave excitation forces/moments acting on each caisson in case κ=2 in surge, pitch and 25 

yaw modes are the largest among the case studies for the majority of the wave frequencies tested, 26 

and the wave excitation forces in the sway mode are the smallest. 
( )2

e,1F  and 
( )2

e,2F  for case 27 

κ=κ’=2 are the largest for the entire range of wave frequencies tested. 28 

The research presented in this paper focused on wave diffraction from multiple stationary 29 

truncated cylinders. The analytic model established in this paper, together with that developed by 30 

Zheng, Zhang, Liu and Iglesias [41] for solving the problem of wave radiation from cylinders 31 

oscillating independently in the absence of an incident wave, can be used to calculate the 32 

hydrodynamic response of an array of truncated cylinders of arbitrary cross sections freely 33 

floating in water waves. 34 
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