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In recent years, the field of Human-Robot Interaction (HRI) has seen an increasing

demand for technologies that can recognize and adapt to human behaviors and internal

states (e.g., emotions and intentions). Psychological research suggests that human

movements are important for inferring internal states. There is, however, a need to better

understand what kind of information can be extracted from movement data, particularly

in unconstrained, natural interactions. The present study examines which internal states

and social constructs humans identify from movement in naturalistic social interactions.

Participants either viewed clips of the full scene or processed versions of it displaying

2D positional data. Then, they were asked to fill out questionnaires assessing their social

perception of the viewed material. We analyzed whether the full scene clips were more

informative than the 2D positional data clips. First, we calculated the inter-rater agreement

between participants in both conditions. Then, we employed machine learning classifiers

to predict the internal states of the individuals in the videos based on the ratings

obtained. Although we found a higher inter-rater agreement for full scenes compared

to positional data, the level of agreement in the latter case was still above chance,

thus demonstrating that the internal states and social constructs under study were

identifiable in both conditions. A factor analysis run on participants’ responses showed

that participants identified the constructs interaction imbalance, interaction valence and

engagement regardless of video condition. The machine learning classifiers achieved

a similar performance in both conditions, again supporting the idea that movement

alone carries relevant information. Overall, our results suggest it is reasonable to expect

a machine learning algorithm, and consequently a robot, to successfully decode and

classify a range of internal states and social constructs using low-dimensional data (such

as the movements and poses of observed individuals) as input.
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1. INTRODUCTION

One of the main goals in the field of Human-Robot Interaction
(HRI) is to create robots capable of recognizing and adapting
to human interaction partners in an appropriate manner
(Dautenhahn and Saunders, 2011). In human-human
interactions, the appropriateness of our responses to others
is often a result of our ability to recognize the internal states (e.g.,
intentions, dispositions) of our interaction partner (Domes et al.,
2007). Here we focus on internal states and social constructs
relevant to task engagement and social relations between
interaction partners. For example, we consider states that can be
thought of as dispositional judgments (e.g., friendliness), states
which can be considered emotional and are embedded within
a social context (e.g., aggression), and states relevant to task
performance (e.g., boredom). These states are communicated
through both verbal and non-verbal cues (Pollick et al., 2001;
Manera et al., 2011). Endowing robots and behavior classification
systems with a similar ability to recognize internal states based
on non-verbal behaviors would allow for more appropriate,
autonomous human-robot interactions (Breazeal et al., 2009;
Vernon et al., 2016), and for classification systems to provide
more detailed insights into human behavior, e.g., for security
purposes (Gowsikhaa et al., 2014).

1.1. Internal State Recognition
HRI research exploring approaches to achieving on-line
recognition of human internal states/behavior draws on our
understanding of how humans themselves infer internal states
and social constructs. For example, a rich history of research has
led to the assumption that humans are able to infer the internal
states of others by observing their actions and movements
(Gallese and Goldman, 1998; Manera et al., 2011; Quesque et al.,
2013) and facial expressions (Ekman and Friesen, 1971; Haidt
and Keltner, 1999; Tracy and Robins, 2008). In their paper,
Manera et al. (2011) claim that “in some circumstances, the
movement of a human body... is sufficient to make judgments...
in relation to the actor’s intention" [p. 548]. The idea here is
that our intentions or emotions influence differences in the
movements we make and, as observers, we are able to pick up on
these differences and use them to infer the internal state of the
person performing the action (Pollick et al., 2001; Ansuini et al.,
2014; Becchio et al., 2017). To examine this researchers have
used point-light displays and other methods to isolate movement
information from other sources of information. Point-light
displays denote the position and movements of an actor’s joints
on an otherwise blank display. Studies using this type of stimulus
have shown that humans are able to use observed movement to
infer an actor’s gender (Kozlowski and Cutting, 1977; Mather
and Murdoch, 1994; Hufschmidt et al., 2015), intention (Manera
et al., 2010; Quesque et al., 2013) and emotional state (Pollick
et al., 2001; Alaerts et al., 2011).

Available evidence also suggests that internal states
and social constructs which fall under our definition of
being socially relevant, dispositional or related to task
engagement/performance are recognizable from observable
movement. Okada et al. (2015) found that observable

movements and non-verbal audio information produced
during spontaneous, naturalistic interactions were sufficient for
classifying dispositions and social behaviors such as dominance
and leadership. Similarly, Sanghvi et al. (2011) demonstrated that
postural behaviors could be used to classify a child’s engagement
with a robotic opponent, with which the children are playing a
game. Beyan et al. (2016) asked four unacquainted individuals
to complete a group decision task. They found that a classifier,
when fed the 3D positional data of the interaction, was able to
identify leaders within the group based on head pose and gaze
direction information. Sanchez-Cortes et al. (2011) applied a
computational framework to the inference of leadership and
related concepts (e.g., dominance, competence) from non-verbal
behaviors in a group interaction. Interactions in this study
took place between four previously unacquainted individuals
whose interactions were spontaneous and minimally structured.
Sanchez-Cortes and colleagues were able to identify which
behaviors were most informative for the recognition of the
different leadership concepts. For example, conversational
turn-taking and body movement behaviors were found to
be the most informative for inferring leadership, whereas
head activity and vocal pitch were the most informative for
inferring competence.

States which are socially relevant, dispositional or task related,
(such as friendliness, dominance or engagement) are particularly
relevant for HRI research where the aim is to provide a socially
interactive agent. In such scenarios it is preferable to have
an agent which can provide appropriate social behaviors and
responses (Dautenhahn and Saunders, 2011). Whilst emotion
and intention recognition are definitely important for generating
appropriate autonomous social behaviors from a robot, some
HRI scenarios would also benefit from an ability to recognize
internal states as we have defined them here. For instance,
a teaching robot, such as those developed by the L2TOR
project (Belpaeme et al., 2015), would be better able to provide
appropriately timed encouragements or prompts if able to
recognize when a student is bored or not engaged with the
learning task.

As a result, HRI researchers have begun exploring ways in
which observed movement can be utilized by robots and artificial
systems to enable automated interpretation of, and responding
to, the internal states of humans (Schrempf and Hanebeck, 2005;
Han and Kim, 2010). Whilst humans also use other cues such
as tone of voice (Walker-Andrews, 1997), findings such as those
described above suggest that movement information may be
sufficient for recognizing some, if not all, human internal states.

1.2. Current Study
1.2.1. Motivation and Approach

To take advantage of this information for the purposes of internal
state recognition it is important to first identify what internal
state information is available in movements and body postures.
This knowledge is particularly useful for streamlining the design
process for a robot or classifier able to interpret such data. For
example, if we want to design a system able to recognize when a
human is bored, we first need to know what data is sufficient, if
not optimal, for recognizing this state. Would the system need
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to take multiple behaviors into account, e.g., movements and
prosodic features, or would movement alone be enough? In the
case of internal states such as emotions and intentions, previous
research suggests that movement information is sufficient for
gaining insight (e.g., Tracy and Robins, 2008; Manera et al.,
2011; Quesque et al., 2013). Given that the aim of HRI research
is to create systems and robots which can be deployed in the
real world, it is also important to consider that a classifier must
be able to deal with natural, spontaneous human behaviors.
Consequently, it is important to explore whether (and which)
internal states can be recognized from the movements produced
in natural human interactions. A a growing pool of studies have
examined this (e.g., Sanchez-Cortes et al., 2011; Sanghvi et al.,
2011; Shaker and Shaker, 2014; Okada et al., 2015; Beyan et al.,
2016; Okur et al., 2017; Kawamura et al., 2019). However, further
research is needed to provide a better understanding of which
internal states can be inferred from such movements.

We therefore propose that an exploration into how readily
different types of internal states can be identified from
naturalistic human behavior would be beneficial for the
streamlining of future HRI research. That is, by identifying which
internal states are best recognized from a particular behavioral
modality (e.g., biological motion), future research can identify
which data sources are most useful for a given recognition task.

This study takes the first steps in this direction by developing
a method for determining which internal state information is
reported as identifiable by humans when they observe people in
natural interactions. Given the strength of evidence suggesting
that movement information is useful for identifying emotional
and other internal states or social constructs (e.g., Pollick et al.,
2001; Gross et al., 2012; Quesque et al., 2013; Beyan et al.,
2016), this modality is likely to be a rich source of internal
state information. Further, by extending this work to naturalistic
interactions, we will find which internal states are likely to be
identified in more ecologically valid settings. The usefulness of
these states to HRI, indicate that an exploration of which internal
states, from a selection of several, are recognizable from human
movements would be helpful in guiding future research and
development. To address this, we aim to examine and compare
how reliably humans report identifying a number of different
internal states and social constructs from observable movements.

To summarize, the main aim of this study is to demonstrate
a method for identifying: (1) whether the data source of choice
(in this case observable movements) can be used by humans to
infer internal states and social constructs, and (2) what internal
states and social constructs are readable from the movements
within the data set. To do so, we will present short video clips
of social interactions (exhibiting seven different internal states
and social constructs) to participants. These clips come from the
PInSoRo (Lemaignan et al., 2017) data set made openly available
by our group1. This data set consists of videos of child-child
or child-robot interactions. Children were asked to play for as
long as they wanted on a touch-screen table-top device. For this
study, we will solely use the child-child interactions as these
are more likely to involve spontaneous behaviors throughout

1https://freeplay-sandbox.github.io

the children’s interactions with one another. Some participants
will view short clips including the full visual scene (full-scene
condition) and others clips containing only movement and body
posture information (movement-alone condition). These clips
will contain at least one noticeable internal state (for details of
the selection process see the Method section). Following each
clip, participants respond to a series of questions where they can
describe the internal states (e.g., boredom, friendliness) or social
constructs (e.g., cooperation, dominance) they identified in the
children’s behaviors. By comparing responses in each condition
we expect to be able to identify constructs which are likely to be
recognizable from movement information alone.

1.2.2. Hypotheses and Predictions

Based on previous findings that humans are able to recognize
internal states such as emotions (Gross et al., 2012) and group
dynamics such as leadership (Beyan et al., 2016) from human
motion information, we expect the following:

1. Participants will report being able to draw internal state
information from the movement-alone videos (Hypothesis
1). Specifically, we predict that even in the impoverished
movement-alone condition, the provided ratings will be
sufficient to describe the internal states and social constructs
identified in the observed interaction. This can be tested by
training a classifier on the full-scene ratings, and assessing its
performance when tested on the movement-alone ratings.

2. However, given that participants in this condition are
provided with fewer visual cues than those viewing the full-
scene videos (e.g., lack of resolution for facial expressions) we
expect a higher recognition error rate in the movement-alone
condition compared to the full-scene condition (Hypothesis
2). If this is the case, we predict that inter-rater agreement
levels amongst participants will be above chance in both
conditions (i.e. the same constructs are robustly identified
in the clips by the participants), but with higher levels of
agreement in the full-scene condition.

2. METHOD

2.1. Design and Participants
This study examined the effect of video type (full-scene vs.
movement-alone) on responses to questions about the nature
of the interaction depicted in the videos. We used a between-
subject design: participants saw either full-scene clips (Figure 1,
left) or movement-alone clips (Figure 1, right). 284 participants
were recruited fromAmazon’sMechanical Turk (MTurk). A total
of 85 participants were excluded from analysis due to incorrect
answers to an attention check (discussed in Procedure), leaving
199 participants (see Table 1 for demographics). All participants
were remunerated $1 (USD) upon completion of the experiment.

2.2. Materials
The stimuli used for this experiment were extracted from the
PInSoRo data set. This data set contains videos (up to 40 min
long) of pairs of children interacting whilst playing on a touch-
screen table-top. For the present study we extracted twenty 30 s
clips from these videos. We wanted to provide participants with
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FIGURE 1 | Captures of one of the twenty video-clips, full-scene condition on the left, movement-alone condition on the right. Written consent for these images to be

shared was obtained during collection.

TABLE 1 | Demographics of participants included in the analyses.

Condition N Mean Age

(Range)

Gender

(%M, %F)

%

American

% English

First

Language

Movement-

Alone

100 34.52 (22–70) 55%, 44% 75% 80%

Full-Scene 99 33.54 (19–72) 65%, 34% 69% 73%

Both 199 34.03 (19–72) 60%, 39% 72% 76%

clips which showed both children in the frame at the same time.
We therefore selected our stimuli from videos filmed using a
camera which had been positioned roughly 1.4m away from the
touch-screen table-top, with the table-top in the center of the
camera’s view, thus allowing for each child to be viewed on either
side of the frame (see Figure 1, left).

Two versions of the same clips were extracted: the full-
scene clips were the raw video footage of the children playing,
recorded from a static camera (Figure 1, left); the movement-
alone clips were based on the exact same clips, but post-processed
to extract skeletal and facial landmarks (using the OpenPose
library2; Cao et al., 2017). Resulting landmarks were rendered on
a black background, and connected to each other using colored
lines, so that each child was depicted as a stick-man-style figure
(Figure 1, right).

Clip selection was made based on whether a notable
“event” or social dynamic occurred, defined as the labels
listed in Table 2. This was done by watching the full-
scene clips and working out what internal states and social
constructs might be inferred from the children’s movements.
Specifically, two experimenters selected and labeled clips (by
first independently extracting and annotating clips from the
PInSoRo dataset, and second discussing to reach consensus)
wherein at least one of the following seven concepts described
the children’s behavior or their interaction in the full-scene clips
(see Table 2):

2https://github.com/CMU-Perceptual-Computing-Lab/openpose/

1. Boredom - at least one child was bored or not engaging
with the task on the touch-screen (e.g., resting head in hand,
interacting with touch-screen in slow/lazy manner).

2. Aggression - at least one child exhibited a physical aggressive
action either toward the touch-screen or the other child (e.g.,
hitting the screen, pushing the other child’s hand away).

3. Cooperation - the children were working together and/or
communicating about how to perform a task [e.g., talking,
joint attention (looking at the same object together), nodding].

4. Dominance - one child was bossy, performing most of the
actions on the touch-screen or clearly in charge (e.g., pointing
to touch-screen and talking at the other child, stopping the
other child from using the touch-screen, being the only child
to use the touch-screen).

5. Aimless play - at least one child was interacting with the
touch-screen in a non-goal-directed manner or without being
very engaged in their task (e.g., sitting slightly away from
touch-screen whilst still using it, slow/lazy movements on
touch-screen, not always looking at what they’re doing).

6. Fun - at least one child was having fun (e.g., laughing, smiling).
7. Excitement - at least one child behaved excitedly (e.g., more

dynamic than just “having fun," hearty laughter, open smiling
mouth, fast movements).

It was decided that multiple labels could be applied to each
clip for two reasons. First, the two children in each clip could
have behaved in very different ways. Thus, if one child was
bored and the other excited, the clip would be assigned both
the Boredom and Excitement labels (see Table 2). Second, we
recognized that a lot can happen in 30 s (the duration of
the clips) resulting in changes in the internal states or social
constructs which could be inferred from the children’s behaviors.
For example, an interaction might involve an excited child
pushing the other away so they didn’t have to share the touch-
screen, causing the second child to sit and watch in a manner
denoting boredom, this clip could be labeled with Excitement,
Aggression and Bored. These labels were selected based on two
considerations: (a) the events and internal states which appear
available the dataset, and (b) events and internal states which
would be useful to a robot which might observe or mediate
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TABLE 2 | Labels that experimenters assigned to each clip during clip selection.

Clip Label 1 Label 2 Label 3

01 Aggressive

02 Aggressive Excited Aimless

03 Excited Fun

04 Cooperative

05 Bored Aimless

06 Cooperative

07 Dominance

08 Bored

09 Cooperative

10 Cooperative Dominance

11 Cooperative Dominance

12 Aggressive Aimless

13 Excited Aggressive Aimless

14 Aggressive Fun

15 Dominance

16 Cooperative Dominance

17 Excited Aggressive

18 Aggressive Dominance

19 Dominance

20 Excited

such an interaction. Recognizing boredom and aimless behavior
would allow a robot to appropriately encourage a child to take
part in a task. Recognizing when a child is being dominant or
aggressive could provide a robot with cues tomediate and balance
the interaction, or request assistance from a human adult (e.g.,
in the case of aggressive behavior). Recognizing excitement, fun
and cooperation could be used to cue positive feedback from
the robot, or to signal that the robot need not interject. The
selection was made independently by two of the authors, using
a consensus method to reach agreement. It is important to note
that interactions in this data set were minimally controlled -
pairs of children from the same school class were asked to play
on a touch-screen table-top for as long as they wanted. Whilst
structured play options were provided, they were not enforced.
The selected clips were stored on a private server for the duration
of the experiment.

Similarly to the selection of clip labels, the questions were
constructed by the experimenters based on the types of internal
states and social constructs we might want an artificial system
to recognize within a scene. The open question was a single
item which asked participants “What did you notice about the
interaction?.” The closed questions were a series of 4 unique
questions concerning group dynamics, and 13 2-part questions
wherein participants were asked the same question twice, once
regarding the child on the left and once regarding the child
on the right. Each of these 13 pairs were displayed one after
the other. Otherwise, the order in which the questions were
presented was random (see Appendix A for the questions and
response options).

It is important to note that the ground-truth of what internal
states the children were experiencing during their interactions is

not available. As such, neither the labels used for clip selection
and labeling, nor the inferences participants provide in their
questionnaire responses can be truly validated. The labels were,
therefore, also an attempt to work out what naive observers
would infer from the videos.

2.3. Apparatus
The experiment was designed using the jsPsych library3, and
remotely hosted from a private server (Figure 2 shows a
screenshot of the experiment). The experiment was accessible
via Amazon Mechanical Turk (MTurk) to MTurk Workers. An
advert was posted onMTurk containing a link to the experiment.
The remote/online nature of this study means that we had no
control over the physical set-up experienced by the participants.

2.4. Procedure
The two video conditions were posted as separate experiments.
To ensure that participants did not complete both conditions,
the experiments were posted one at a time. Upon opening the
experiment participants were asked to provide their MTurk
ID and then shown a welcome screen. This was followed
by a consent form where participants were asked to provide
consent by selecting one of two response options (“I do not
consent,” or “I do consent”). If participants selected “I do
not consent,” the experiment would close. If they selected “I
do consent” participants were able to press a “Continue” button
and proceed to an instruction screen. This was followed by a
series of 4 demographic questions (age, nationality, first language
and gender). An instruction screen was then presented for a
minimum of 3,500 ms, containing the following text:

“During this experiment you will be shown 4 30-second clips of

children interacting. The children are sat either side of a touch-

screen table-top on which they can play a game. Pay particular

attention to the way the children interact. After each video you will

be asked some questions about what you have watched.”

Participants could then press any button to continue on to the
experimental trials.

All participants were asked to complete 4 trials and were
presented with the same series of events within each trial.
Each trial started with a 30 s clip selected randomly from the
list of 20, which was immediately followed by the questions.
Upon completion of the fourth trial, participants were shown
an additional 2 questions which acted as an attention check (see
Figure 3). Responses to these questions were used to assess how
attentive participants were and how diligently they completed
the experiment. Participants who responded incorrectly were
excluded from analysis.

Participants then viewed a debrief page which thanked
them, explained the purpose of the study and attention-check
questions, and provided participants with contact information
if they had further questions or desired to withdraw their data.
Participants were then provided with a “survey code” which was
randomly generated and were instructed that they had completed

3https://www.jspsych.org/
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FIGURE 2 | Screenshot of the online experimental setup showing the

questionnaire, just after watching the video clip (here in the full-scene

condition). The poster image displayed at the top is a static snapshot of the

clip. Written consent for these images to be shared was obtained during

collection.

FIGURE 3 | Capture of attention check questions presented at the end of the

questionnaire. Single correct answer provided. Questions and responses are

presented in the same format as the rest of the questions in order to test

whether participants read the questions.

the experiment and should now return to the MTurk page in
order to submit their survey code. The survey codes participants
submitted were later compared to those generated to validate
participation and payment was authorized via theMTurk system.
The experiment took between 20 and 30 min to complete.

The resulting data set is fully anonymous, and made publicly
available at https://github.com/severin-lemaignan/pinsoro-
kinematics-study/blob/master/fulldata.csv.

3. RESULTS

All data analyses were performed with the Python pandas and
sklearn toolkits. The notebook used for this article, allowing
for the replication of our results, is available online, see section 5.

The responses to the open questions revealed no insights
beyond those addressed in the specific questions. Therefore, the
analyses of these responses are not included in this report.

3.1. Inter-rater Agreement
To determine inter-rater agreement and reliability, we calculated
agreement scores across all 30 questions for each clip in each
condition separately. This analysis was performed to examine
whether participants in each condition gave similar ratings
across all questions when they had viewed the same clip.
High agreement would indicate that participants had interpreted
similar things from a given clip, e.g., participants might all have
felt that the children in a clip were being friendly and cooperative,
or aggressive and competitive. Whilst this analysis does not
reveal exactly what participants interpreted from the videos, it
does indicate whether they gave similar ratings, and therefore
reported recognizing similar states/behaviors. Given that each
clip was rated by a varying subset of participants, Krippendorff ’s
alpha (Hayes and Krippendorff, 2007) was the most appropriate
metric of rater agreement (see Table 3 for number of raters
and agreement per clip). The alpha scores ranged from
0.058 to 0.463 i.e., from “slight” to “moderate” agreement
(Landis and Koch, 1977).
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TABLE 3 | Table of inter-rater agreement scores for responses to each clip in each

condition.

Clip Krippendorff’s Alpha (3 d.p.)

Full-Scene (N) Movement Alone (N)

1 0.446 (16) 0.186 (26)

2 0.181 (24) 0.270 (20)

3 0.393 (22) 0.369 (18)

4 0.444 (22) 0.262 (23)

5 0.328 (23) 0.283 (20)

6 0.463 (19) 0.359 (19)

7 0.091 (19) 0.236 (23)

8 0.339 (19) 0.312 (17)

9 0.097 (20) 0.058 (18)

10 0.396 (18) 0.086 (13)

11 0.280 (17) 0.234 (23)

12 0.368 (25) 0.298 (16)

13 0.334 (20) 0.189 (21)

14 0.310 (17) 0.309 (21)

15 0.422 (26) 0.242 (14)

16 0.192 (16) 0.272 (21)

17 0.273 (17) 0.183 (21)

18 0.334 (16) 0.331 (24)

19 0.415 (22) 0.304 (19)

20 0.451 (18) 0.250 (23)

A t-test was conducted to assess whether the two conditions
differed in their agreement scores across all 20 clips. This analysis
revealed that participants in the full-scene condition showed
significantly higher agreement (M = 0.328, SD = 0.110) than
participants in themovement-alone condition (M = 0.252, SD =

0.079) (Paired Samples T-Test: t(39) = 2.95, p = 0.008, d = 0.78).
These analyses show that participants viewing the full-scene clips
demonstrated higher levels of agreement in their ratings than
those viewing the movement-alone clips. However, participants
in the latter condition still showed some agreement compared to
chance (chance level Krippendorff ’s Alpha= 0.0; One Sample T-
Test: t(19) = 13.95, p =< 0.001, d = 3.12), suggesting that some
internal states and social constructs were recognizable within the
movement information in both conditions.

3.2. Automatic Labeling of Internal States
The following analysis explored the question of whether the
internal states and social constructs which were available
to/inferred by humans when viewing the full visual scene was also
available in the movement-alone condition.

We investigated this question using supervised machine
learning: would a classifier, trained to label internal states and
social constructs from the full-scene ratings, then label the social
situations equally well from the movement-alone ratings? If so,
this would suggest that the same interaction information was
recognized by, and therefore available to, participants in each
video condition.

Pre-processing Participants’ ratings were coded from 0
(strongly disagree) to 4 (strongly agree), each construct being

recorded as leftconstruct and rightconstruct (seeAppendix A). Before
the following analyses were run, the data from the right-left
paired questions was transformed so that results could be more
easily interpreted in terms of what behaviors were evident in
the interactions, ignoring whether it was the child on the right
or the left who was exhibiting this behavior. First, for each
question we calculated the absolute difference diffconstruct =

abs(leftconstruct − rightconstruct) between the score for the left child
and the right child. This score was calculated so that we could
more easily see if the children were rated as behaving in the
same way, or experiencing similar internal states. Examining the
individual scores for each child would have meant that in order
to see the dynamics between the children, each clip would have
needed to be analyzed separately. Second, for each question we
calculated the sum (shifted to the range [−2, 2]) sumconstruct =

leftconstruct + rightconstruct − 4 of the scores for both children.
This score was calculated because the difference score does not
contain information about the strength of the rater’s belief that
the behavior or internal state was evident in the clip. For example,
we might have the same difference score for clips where raters
believed that both children behaved aggressively and that neither
child behaved aggressively. The sum score tells us the degree to
which a state was identifiable in the clip.

Multi-label classification To test whether the same
interaction information was reported in each video condition
we examined whether the ratings from each condition were
sufficient to identify the types of internal states or social
constructs which were depicted in the videos.

The classifier was trained in a supervised manner, using
the 30 ratings provided by the participants (questions from
Appendix A, pre-processed as indicated above) as input, and the
seven labels assigned to each clip during selection (Table 2) as the
target classification classes. Because the clips could be assigned
multiple labels (e.g., a given interaction can be fun and cooperative
at the same time), we used a multi-label classifier (Pieters and
Wiering, 2017), using 7-dimensional binary vectors (wherein a
zero value denoted that a label was not present in the clip, and a
value of one denoted that it was).

We compared the performances of four of classifier
(random forest classifier, extra-tree classifier, multi-layer
perceptron classifier and a k-Nearest Neighbor classifier, using
implementations from the Python sklearn toolkit; hyper-
parameters were optimized using a grid search where applicable),
and eventually selected a k-Nearest Neighbor (with k = 3)
classifier as providing the best overall classification performance.

Accuracy, precision, recall and F1 score were calculated

to assess the performance of the classifier (following
recommendations in Sorower (2010) and using the weighted

implementations of the metrics available in the Python

sklearn toolkit). Specifically, in the following, Accuracy

reports the percentage of instances where the predicted labels

match exactly with the actual labels; Precision is calculated as

the ratio
tp

tp+fp
of true positives divided by the total number

of predicted labels (true positives + false positives); Recall is
calculated as

tp
tp+fn

, i.e. the ratio true positives over the total

number of labels that should have been found (true positives +
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false negatives). Finally, the F1 score is the harmonic average of

the precision and recall, calculated as
2precision·recall
precision+recall

.

To see how well the classifier performed, we compared
performance against chance. Chance levels for these metrics were
calculated by training the classifier with randomly generated
labels (using the same distribution of labels as found in the real
data set), and then measuring the classifier’s performance on the
actual testing data set.

Results are shown in Table 4. In both testing conditions,
performance is poor to moderate (for instance 15.8% accuracy
for the exact predictions of correct labels in the movement-alone
clips), but remain markedly above chance levels (following Ojala
and Garriga (2010) permutation-based p-value for classification
significance, we found p = 0.02 for the full-scene classification,
and p = 0.01 for the movement-alone classification, ruling out
with high probability the null hypothesis that the classification
results are due to chance).

Importantly, we found that prediction scores are very similar
when testing the classifier on the full-scene ratings or when
testing on the movement-alone ratings. This indicates that, from
the perspective of automatic data classification, participants who
viewed the movement-alone videos were able to report similar
details as participants in the full-scene condition. This suggests
that the movement-alone videos contain sufficient information
to identify different internal states and social constructs.

To identify whether there were particular internal states or
social constructs which were easier to recognize than others, the
F1 score for each label was calculated. These results are reported
in Table 5 and Figure 4. We can see that in both conditions
the labels “Bored” and “Aggressive” have higher F1 scores than
the other labels. Additionally, the F1 scores for these labels
when classifying the full-scene ratings (Bored: 60.0%, Aggressive:
39.0%) are similar to the F1 scores when testing was done on
the movement-alone ratings (Bored: 58.5%, Aggressive: 43.7%).
This suggests that these constructs are as readily recognized
when viewing the full visual scene as when viewing only body
movements. In contrast, the F1 score for “Aimless” when testing
on full-scene ratings is similar to the scores for most of the
rest of the labels (30.3%) but drops to be much lower than any
other label when testing was done on themovement-alone ratings
(19.4%). This could be interpreted as showing that aimless play,
whilst fairly well recognized from the ratings of full visual scene

TABLE 4 | Classification results. Full-scene results are obtained by training the

classifier on 80% of the full-scene ratings, and testing on the remaining 20%;

Movement-alone results are obtained by training the classifier on 100% of the

full-scene data, and testing on the movement-only ratings.

Accuracy Precision Recall F1-measure

Full-scene 15.1 44.5 32.0 36.1

Chance 3.7 27.3 14.0 17.4

Movement-alone 15.8 41.6 32.7 36.3

Chance 3.9 28.2 14.2 17.9

Results are averaged over a 300-fold cross-validation. Values are given as percentages.

videos, is much harder to recognize from ratings produced when
participants viewed only movement information.

This analysis relied on the labels assigned by some of
the authors during clip selection. However, participants may
have been able to recognize other internal states or social
constructs not covered by these labels. In order to investigate
possible latent constructs that participants in both conditions
may have relied on, we next performed a factor analysis on
the dataset.

3.3. Factor Analysis
An Exploratory Factor Analysis (EFA) was performed to explore
what types of information participants reported recognizing from
the videos. If similar latent constructs are found to underlie
participants responses in each condition, this would support the
conclusion that participants reported identifying the same types
of information in each type of video. Additionally, exploring what
factors load into each construct would provide an indication of
what these types of information are.

EFA Preliminary assessments revealed a Kaiser-Meyer-Olkin
(KMO) statistic of 0.89 and the Bartlett’s Test of Sphericity was
significant, indicating that the data was suitable for performing
an EFA. EFA was performed on the ratings data from each
video condition separately to examine what types of interaction
information participants were able to draw from the full visual
scene compared to movement information alone. We used the

TABLE 5 | F1 scores for each independent label.

Aggressive Aimless Bored Cooperative Dominant Excited Fun

Full-scene 42.2 29.5 56.6 30.7 37.9 32.2 25.1

Chance 18.8 17.3 11.7 18.2 20.0 18.6 11.4

Movement

Alone

43.7 19.4 58.5 29.6 43.4 31.2 27.5

Chance 20.1 16.1 10.7 18.7 19.9 17.3 10.4

See Table 4 for the meaning of each row. Values are given as percentages.

FIGURE 4 | F1 scores of individual label predictions in both conditions.
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TABLE 6 | Factor loadings for the three-factor solution using EFA, with factor

loadings > 0.35.

Factor 1:

imbalance

Factor 2:

valence

Factor 3:

engagement

Full-

scene

Mov.-

alone

Full-

scene

Mov.-

alone

Full-

scene

Mov.-

alone

Diff sad 0.41 0.52

Sum sad 0.72 0.53 0.49

Diff happy 0.49 0.53

Sum happy –0.51 –0.55

Diff angry 0.40 0.62

Sum angry 0.81 0.85

Diff excited 0.53 0.63

Sum excited –0.71

Diff calm 0.45 0.63

Sum calm –0.45

Diff friendly 0.69 0.56

Sum friendly –0.60 –0.43

Diff aggressive 0.78 0.79

Sum aggressive 0.80 0.72 –0.36

Diff engaged 0.39 0.65 0.52

Sum engaged –0.64 –0.64

Diff distracted 0.65 0.63

Sum distracted 0.63 0.82

Diff bored 0.44 0.61 0.54

Sum bored 0.58 0.48 0.83

Diff frustrated 0.53 0.61

Sum frustrated 0.70 0.69

Diff dominant 0.75 0.81

Sum dominant 0.53 0.52

Diff submissive 0.68 0.72

Sum submissive 0.54

factor_analyzer Python module4 to perform the EFA,
additionally using a promax rotation. Three factors were found
to explain 44% of the variance in the full-scene ratings, and
46% in the movement-alone ratings. The factor loadings for each
component can be seen in Table 6.

A Pearson correlation was conducted to examine the
similarity of components found in the full-scene and movement-
alone ratings. A strong positive correlation was found between
each pair of components: for Factor 1: r = 0.94, p < 0.001;
for Factor 2: r = 0.84, p < 0.001; for Factor 3: r =

0.81, p < 0.001. This supports the hypothesis that the same
latent constructs are relied upon by the participants to rate social
interactions, be it based on raw video footage (full-scene) or
on a simplified, movement-only, stick-man-style representation
(movement-alone).

By inspecting the distribution of factors loadings in Table 6,
the latent constructs can be further interpreted. It appears that
the first component is describing how different the children’s
behaviors and emotional states are, i.e. this factor describes an

4https://github.com/EducationalTestingService/factor_analyzer

imbalance in the children,s social, behavioral, and emotional
states. For instance, a high value on this scale would show that
the children were reported as behaving very differently, e.g., if one
child was highly engaged, the other was not very engaged at all.

The second component describes the overall valence of the
interaction. A high value on this factor would indicate a negative,
adversarial interaction where the children were rated as being
sad, aggressive etc. Alternatively, a (lower) positive valence value
might result from an interaction where one child was rated as
being more sad or aggressive than the other child was happy.
For both conditions this component has positive correlations
with the Sum items for negative emotions and behaviors (e.g.,
Anger, Aggression). For the movement-alone condition, this
component also has negative correlations with Sum items for
positive emotions and behaviors (e.g., Happiness, Friendliness).

The third component is mostly describing the children’s
engagement with their task. In comparison to the other two
components it contains more of a mix of Sum and Difference
items, and therefore describes both how similar the children were
in how engaged they were, and the overall level of engagement
within the interaction. A high value on this third factor would
show that the children were rated as showing different levels
of engagement, but a strong indication of boredom within the
interaction as a whole.

Social Expressiveness of the EFA-Space Embedding One
may wonder whether these three factors alone would allow by
themselves for an effective assessment of a social interaction, i.e.
is the social “expressiveness” of our EFA factors as good as the
original 26 factors? This can be investigated by re-applying the
same classification methodology as used in section 3.2 to the EFA
embedding of the participants’ ratings.

To this end, the 26-dimensional participant ratings were
projected onto the smaller, 3-dimensional, space spanned by the
EFA factors (the EFA-space):

MEFA
fullscene = Mfullscene · 3

EFA
fullscene

MEFA
movementalone = Mmovementalone · 3

EFA
fullscene

with Mfullscene the 396 × 26 matrix of the participants’ ratings,

MEFA
fullscene

the 396× 3 matrix of the participants’ ratings projected

onto the EFA space, and 3
EFA
fullscene

the 26 × 3 matrix of the

EFA factor loadings (Table 6). Both the full-scene clips and
the movement-alone clips where projected into the same space
(spanned by the factors found during the full-scene EFA).

Then, we retrained the same classifier (a kNN with k = 3)
as in section 3.2, and tried to predict social labels from EFA-
projected ratings unseen at training time. Tables 7, 8 show the
results. We observe a drop of about 4–6% in performance, but
still above chance.

4. DISCUSSION AND CONCLUSION

Psychology literature has long established the importance of
observing physical group behaviors to provide us with a unique
window onto the agents’ internal states, as well as the current
state of the social interaction. Specifically, we have previous
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TABLE 7 | Classification results, including classification in EFA-space. EFA-space

means that the dimensionality of the training and testing data is reduced to 3 by

projecting the ratings onto the 3-dimensional space spanned by the EFA factors;

non-EFA values copied from Table 4 for comparison.

Accuracy Precision Recall F1-measure

Full-scene, EFA 11.2 38.3 26.2 30.0

Full-scene 15.1 44.5 32.0 36.1

Chance 3.8 28.1 14.2 17.8

Movement-alone, EFA 11.7 35.1 27.0 30.3

Movement-alone 15.7 41.6 32.7 36.3

Chance 3.9 28.3 14.2 17.9

Values are given as percentages.

TABLE 8 | F1 scores for each independent label, including after classification in

the EFA-space.

Aggressive Aimless Bored Cooperative Dominant Excited Fun

Fullscene, EFA 37.8 16.2 53.9 29.4 29.7 25.9 20.6

Fullscene 42.2 29.5 56.6 30.7 37.9 32.2 25.1

Chance 19.1 16.5 11.7 19.0 19.6 17.4 11.0

Movement

alone, EFA

36.5 24.0 49.2 24.6 33.7 27.4 12.2

Movement

alone

43.7 19.4 58.5 29.6 43.4 31.2 27.5

Chance 19.8 16.4 10.7 18.9 19.9 17.9 10.5

Non-EFA values copied from Table 5 for comparison. Values are given as percentages.

evidence of the role of movements/actions as an important social
signal (Gallese and Goldman, 1998; Alaerts et al., 2011). The
main contribution of this paper is to investigate the question of
what different states are identified by observers of naturalistic
interactions, looking at the (rather messy) social interactions
occurring between children while playing together.

This study aimed to examine the kinds of information humans
report recognizing from the movements of such naturalistic
social interactions. We investigated the following question: is
movement information alone (in our case, the moving skeletons
of two children playing together, pictured on a uniform black
background) sufficient for humans to successfully infer the
internal states and social constructs experienced and present
within a social interaction? Our methodology involved a
between-subject, on-line study, where participants were asked
to rate children’s behaviors along 17 dimensions, having either
watched the raw footage of short interaction videos, or only the
skeletons and facial landmarks extracted from the same video
clips. This resulted in about 800 unique human ratings, covering
both conditions, across 20 different clips, selected for displaying
a range of different internal states and social constructs.

We explored the ratings data set (which is publicly available,
see the details in the following section) using two main data
mining techniques. We first trained a classifier on the full-
scene ratings with hand-crafted social labels to then attempt
to automatically identify these social labels on the movement-
alone ratings. Our results show that training our best performing

classifier (a 3-kNN) on 80% of the full-scene ratings and testing
on the remaining 20% results in a (cross-validated) precision
of 46.2% and recall of 33.6%. We found very similar levels of
precision and recall (respectively 41.6 and 32.7%) when testing
on the movement-alone ratings: the assessment of the social
interaction taking place between two children, made by naive
observers watching a low-dimensional, movement-alone video-
clip of the interaction, carries similar informational content
regarding the internal states and social constructs as the original
raw video footage. Based on this finding, we can tentatively
conclude that whilst the movement alone videos contain fewer
pieces of information, the pieces of information available are as
meaningful as those in the full scene videos. Furthermore, we
can assess that these pieces of information can be interpreted by
human observers in a similar way as those in the full scene videos.

To better make sense of these results, we employed a second
data mining technique (Exploratory Factor Analysis, EFA) to
attempt to uncover underlying latent factors that would in effect
embody stronger cognitive constructs, implicitly relied upon
by the humans when assessing a social interaction. We ran
independent EFAs on the ratings provided for the full-scene
videos and those provided for the movement-alone clips.

To our surprise, the latent factors found by the EFA were
strongly correlated between both conditions. In both condition,
one factor was measuring the behavioral imbalance between the
two children (i.e. how similar or dissimilar their behaviors were);
a second factor reflected the valence of the interaction, from
adversarial behaviors and negative emotions, to pro-social and
positive behaviors and emotions; finally a third factor embodied
the level of engagement of the children. These constructs may
be indicative of the constructs humans use to interpret social
interactions in general. Further research is needed to confirm
whether or not this is the case. However, if it is it would provide
further insights into how humans approach the interpretation
and understanding of social interactions. That is, these three
factors may represent the basic cognitive constructs humans use
to understand social interactions. Consequently, HRI research
could use these constructs as a basic framework for exploring
human behavior for classification purposes.

Using the 3-dimensional subspace spanned by these three
EFA factors, we have furthermore shown that ‘summarizing’ the
internal states and social constructs inferred by the participants
into the 3 latent constructs—imbalance, valence, engagement—
only slightly degrades the ability of the classifier to predict the
social labels associated with the interaction. This reinforces the
hypothesis that these three constructs might play a foundational
role in the human understanding of social interactions.

The results of both the classification analysis and EFA
demonstrate that it is reasonable to expect a machine learning
algorithm, and in consequence, a robot, to successfully decode
and classify a range of internal states and social constructs
using a low-dimensional data source (such as the movements
and poses of observed individuals) as input. Specifically, whilst
this study does not examine the ability to identify the correct
internal states or social constructs, we have shown that, in a
robust way, people agree in their reports of what they have
seen both within and between conditions. As such, our study
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shows that, even though assessing social interactions is difficult
even for humans, using skeletons and facial landmarks only
does not significantly degrade the assessment. Future studies
aiming to train a robotic system would ideally utilize a training
dataset where the internal states and social constructs have been
verified (and therefore a ground-truth is available). This study
provides the evidence to guide this type of work, for example
by demonstrating that training a robot to recognize aggression
from movement information is likely to be more successful than
recognizing aimlessness.

4.1. Opportunities for Future Work
Given that this work is exploratory in nature, it presents a
number of opportunities for future work. First, while above
chance, the accuracy of the classifier is relatively low. This may
reflect the inherent difficulty of rating internal states and social
constructs for an external, naive observer (such as the raters
recruited for this study). The literature on emotion recognition
does show that humans are able to recognize emotional states
from impoverished stimuli with a high level of accuracy [e.g.,
44–59% in Alaerts et al. (2011), 59–88% in Gross et al. (2012)].
Similarly, research regarding the recognition of dispositions
and social behaviors indicate that computational techniques can
achieve a higher recognition accuracy than the current study.
For example, Okada et al. (2015) achieved around 57% accuracy
in classifying dominance. However, there is some evidence to
suggest that humans may not be as accurate as computational
classifiers in identifying internal states as we define them here.
To demonstrate, Sanghvi et al. (2011) found that whilst human
observers were able to recognize engagement to an average of
56% accuracy, their best classifier achieved an 82% level of
accuracy. Whilst the accuracy scores presented here are much
lower, the existing literature suggests that this may be a result
of the fact that humans do seem to demonstrate some difficulty
in recognizing these types of states. Additionally, it is important
to remember that the classifier in this study labeled the clips
using the ratings of all the left/right child questionnaire items,
whereas previous research has tended to use the raw visual and/or
audio information for classification by both computational
systems (Okada et al., 2015) and human observers (Sanghvi
et al., 2011). This high dimensional input may have had the
effect of diluting the specificity and causing the classifier to
use irrelevant or unhelpful inputs when making classification
decisions. Additionally, the low classification accuracy may result
from the fact that the questionnaire used in this study might not
have been good enough. As such, future research would benefit
from developing and optimizing the questionnaire.

Additionally, the present study does not explore precisely
which movement characteristics were useful for participants
in making inferences about the internal states of the children
in the videos. In this study we employed a supervised
classification technique to demonstrate that social interaction
assessments based on full-scene or movement-only stimuli were
of similar quality–most notably, our input were ratings of
social interactions by human observers. This technique is not
practically transferable to a robot, as robots would have to
directly classify the raw stimuli (a video stream or skeletons),

without having access to intermediate ratings of the agents’ states.
Creating such a classifier is an important next step in deciphering
how humans recognize internal states, and therefore in deciding
how a robot or classifier can be endowed with a similar skill, for
which our present results provide a solid foundation.

The fact that the internal states experienced by the children in
the videos could not be validated does present a further limitation
for this study. A number of datasets demonstrating one or a
subset of the internal states we are interested in are available.
For example, the Tower Game Dataset consists of human-human
pairs collaborating on a task, and has been annotated for joint
attention and entrainment behaviors reflecting cooperation and
collaboration (Salter et al., 2015). Similarly, the DAiSEE dataset
contains videos of individuals watching videos in an e-learning
setting and is annotated for the internal states of boredom,
confusion, engagement, and frustration (Gupta et al., 2016).
Other datasets include: the UE-HRI annotated for engagement
(Ben-Youssef et al., 2017), the ELEA annotated for perceived
leadership and dominance (Sanchez-Cortes et al., 2011) among
others. Replicating this experiment using a validated dataset may
provide stronger classification and inter-rater agreement results.
However, few ecologically-valid datasets present the range and
variety of internal states as are available in the PInSoRo dataset.
As such, this present research represents an important first step
in framing the research methodology for analysis of complex,
real-life social interactions.

4.2. Conclusion
The aim of this study was to identify social constructs or
human internal states which a socially interactive robot could be
made to recognize. Analyzing the weighted precision scores for
each classification label revealed that “Aggressive” and “Bored”
were classified correctly more often in both conditions, whilst
“Aimless” was classified correctly much less from the movement-
alone ratings. This suggests that training a robot to recognize
aimlessness based on movement information might not be
as successful as training recognition of boredom. Practically
speaking, this finding suggests that designing a tutor robot,
such as those used by L2TOR (Belpaeme et al., 2015), to
recognize when a child is bored by their task based on
movement information would be more successful than having
the robot recognize when a child is performing the task in an
“aimless” or “non-goal-directed” manner. Such a robot could
then appropriately offer encouragement or an alternative task.

Additionally, these findings suggest that exploring other
data sources for recognizing human internal states may reveal
that certain behavioral modalities may be more useful for
recognizing different states. In this way, the method we have
demonstrated here can be used to streamline research aimed
at teaching robots [and other classification technologies, e.g.,
automatic classification of security footage (Gowsikhaa et al.,
2014)] to recognize human internal states. By applying this
method to different types of input data, research can identify the
optimal behavioral modality for recognizing a particular human
internal state.

These findings have significant impact for both social
psychology and artificial intelligence. For social psychology,
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it consolidates our understanding of implicit social
communication, and confirms previous findings that humans
are able to recognize socially relevant information from observed
movements (Iacoboni et al., 2005; Alaerts et al., 2011; Quesque
et al., 2013). For artificial intelligence, and in particular, for social
robotics and human-robot interaction, it provides support for
the intuition that low-dimensional (about 100 skeletal and facial
points per agent vs. full video frames comprising of hundred
of thousands of pixels), yet structured observations of social
interactions might effectively encode complex internal states
and social constructs. This provides promising support for
fast and effective classification of social interactions, a critical
requirement for developing socially-aware artificial agents
and robots.

5. RESOURCES FOR REPLICATION

Following recommendations by Baxter et al. (2016), we briefly
outline hereafter the details required to replicate our findings.

5.1. Study
The protocol and all questionnaires have been provided
in the text. The code of the experiment is available at
https://github.com/severin-lemaignan/pinsoro-kinematics-
study/. Note that, due to data protection regulations, the
children’ video clips are not available publicly. However, upon
signature of an ethical agreement, we can provide them to the
interested researcher.

5.2. Data Analysis
The full recorded experimental dataset, as well as the complete
data analysis script allowing for reproduction of the results and

plots presented in the paper (using the Python pandas library)

are open and available online, in the same Git repository. In
particular, a iPython notebook with all the steps followed for
our data analysis is available here: https://github.com/severin-
lemaignan/pinsoro-kinematics-study/blob/master/analysis/
analyses_notebook.ipynb.
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A. APPENDIX

A.1. Questions
Open Question: “What did you notice about the interaction?”

Specific Questions: For all of the following questions
participants were asked to report how much they agreed with
each statement. Answers : Strongly Disagree / Disagree / Not Sure
/ Agree / Strongly Agree

1. “The children were competing with one another.”
2. “The children were cooperating with one another.”
3. “The children were playing separately.”
4. “The children were playing together.”

6-7 “The character on the left/right was sad.”
8-9 “The character on the left/right was happy.”

10-11 “The character on the left/right was angry.”
12-13 “The character on the left/right was excited.”
14-15 “The character on the left/right was calm.”
16-17 “The character on the left/right was friendly.”
17-18 “The character on the left/right was aggressive.”
19-20 “The character on the left/right was engaged with

what they were doing on the table.”
21-22 “The character on the left/right was distracted from

the table.”
23-24 “The character on the left/right was bored.”
25-26 “The character on the left/right was frustrated.”
27-28 “The character on the left/right was dominant.”
29-30 “The character on the left/right was submissive.”
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